1,534 research outputs found

    Finding Direct-Collapse Black Holes at Birth

    Get PDF
    Direct-collapse black holes (DCBHs) are currently one of the leading contenders for the origins of the first quasars in the universe, over 300 of which have now been found at z>z > 6. But the birth of a DCBH in an atomically-cooling halo does not by itself guarantee it will become a quasar by z∼z \sim 7, the halo must also be located in cold accretion flows or later merge with a series of other gas-rich halos capable of fueling the BH's rapid growth. Here, we present near infrared luminosities for DCBHs born in cold accretion flows in which they are destined to grow to 109^9 M⊙_{\odot} by z∼z \sim 7. Our observables, which are derived from cosmological simulations with radiation hydrodynamics with Enzo, reveal that DCBHs could be found by the James Webb Space Telescope at z≲z \lesssim 20 and strongly-lensed DCBHs might be found in future wide-field surveys by Euclid and the Wide-Field Infrared Space Telescope at z≲z \lesssim 15.Comment: 5 pages, 2 figures, accepted by ApJ

    Terrestrial lichen response to partial cutting in lodgepole pine forests on caribou winter range in west-central British Columbia

    Get PDF
    In west-central British Columbia, terrestrial lichens located in older, lodgepole pine (Pinus contorta) forests are important winter forage for woodland caribou (Rangifer tarandus caribou). Clearcut harvesting effectively removes winter forage habitat for decades, so management approaches based on partial cutting were designed to maintain continuous lichen-bearing habitat for caribou. This study tested a group selection system, based on removal of 33% of the forest every 80 years in small openings (15 m diameter), and two irregular shelterwood treatments (whole-tree and stem-only harvesting methods) where 50% of the stand area is cut every 70 years in 20 to 30 m diameter openings. The abundance of common terrestrial lichens among the partial cutting and no-harvest treatments was compared across five replicate blocks, pre-harvest (1995) and post-harvest (1998, 2000 and 2004). The initial loss of preferred forage lichens (Cladonia, Cladina, Cetraria and Stereocaulon) was similar among harvesting treatments, but there was greater reduction in these lichens in the openings than in the residual forest. After eight years, forage lichens in the group selection treatment recovered to pre-harvest amounts, while lichen in the shelterwood treatments steadily increased from 49 to 57% in 1998 to about 70% of pre-harvest amounts in 2004. Although not part of the randomized block design, there was substantially less lichen in three adjacent clearcut blocks than in the partial cuts. Regression analysis pre- and post-harvest indicated that increased cover of trees, shrubs, herbs, woody debris and logging slash corresponded with decreased forage lichen abundance. In the short-term, forestry activities that minimize inputs of woody debris, control herb and shrub development, and moderate the changes in light and temperatures associated with canopy removal will lessen the impact on lichen. Implementation of stand level prescriptions is only one aspect of caribou habitat management. A comprehensive approach should consider all factors and their interactions to maintain a viable population of woodland caribou in west-central British Columbia

    The burden of self-reported antibiotic allergies in health care and how to address it: A systematic review of the evidence

    Get PDF
    Background: Antibiotics are the first-line treatment for bacterial infections; however, overuse and inappropriate prescribing have made antibiotics less effective with increased antimicrobial resistance. Unconfirmed reported antibiotic allergy labels create a significant barrier to optimal antimicrobial stewardship in health care, with clinical and economic implications. Objective: A systematic review was conducted to summarize the impact of patient-reported antibiotic allergy on clinical outcomes and various strategies that have been employed to effectively assess and remove these allergy labels, improving patient care. Methods: The review was undertaken using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A critical appraisal was conducted on all studies and a narrative synthesis was performed to identify themes. Results: Four themes emerged: the prevalence of antibiotic allergy, impact of antibiotic allergy on antimicrobial prescribing, impact of antibiotic allergy on clinical outcomes, and delabeling strategies to improve clinical outcomes. Of the 32 studies, including 1,089,675 participants, the prevalence of reported antibiotic allergy was between 5% and 35%. Patients with a reported antibiotic allergy had poorer concordance with prescribing guidelines in 30% to 60% of cases, with a higher use of alternatives such as quinolone, tetracycline, macrolide, lincosamide, and carbapenem and lower use of beta-lactam antibiotics. Antibiotic allergy delabeling was identified as an intervention and recommendation to advance the state of the science. Conclusions: There is substantial evidence within the literature that antibiotic allergy labels significantly impact patient clinical outcomes and a consensus that systematic assessment of reported antibiotic allergies, commonly referred to as delabeling, improves the clinical management of patients

    Development of Alditol Acetate Derivatives for the Determination of 15N-Enriched Amino Sugars by Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry

    Get PDF
    Amino sugars can be used as indices to evaluate the role of soil microorganisms in active nitrogen (N) cycling in soil. This paper details the assessment of the suitability of gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS) for the analysis of <sup>15</sup>N-enriched amino sugars as alditol acetate derivatives prior to application of a novel <sup>15</sup>N stable isotope probing (SIP) approach to amino sugars. The efficient derivatization and cleanup of alditol acetate derivatives for GC was achieved using commercially available amino sugars, including glucosamine, mannosamine, galactosamine, and muramic acid, as laboratory standards. A VF-23ms stationary phase was found to produce optimal separations of all four compounds. The structure of the alditol acetate derivatives was confirmed using gas chromatography/mass spectrometry (GC/MS). For GC–C–IRMS determinations, implementation of a two-point normalization confirmed the optimal carrier gas flow rate to be 1.7 mL min<sup>–1</sup>. Linearity of δ<sup>15</sup>N value determinations up to δ<sup>15</sup>N<sub>t</sub> of 469 ± 3.1‰ (where δ<sup>15</sup>N<sub>t</sub> is the independently measured δ<sup>15</sup>N value) was confirmed when 30 nmol N was injected on-column, with the direction of deviation from δ<sup>15</sup>N<sub>t</sub> at low sample amount dependent on the <sup>15</sup>N abundance of the analyte. Observed between- and within-run memory effects were significant (<i>P</i> < 0.007) when a highly enriched standard (469 ± 3.1‰) was run; therefore, analytical run order and variation in <sup>15</sup>N enrichment of analytes within the same sample must be considered. The investigated parameters have confirmed the isotopic robustness of alditol acetate derivatives of amino sugars for the GC–C–IRMS analysis of <sup>15</sup>N-enriched amino sugars in terms of linearity over an enrichment range (natural abundance to 469 ± 3.1‰) with on-column analyte amount over 30 nmol N

    Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002–06

    Get PDF
    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable than precipitation. Annual ET fluctuated about 7 percent from the 4-year mean, ranging from about 514 to 586 millimeters per year (551 on average) at the Odessa site and 535 to 616 millimeters per year (575 on average) at the Gothenburg site. Conversely, annual precipitation fluctuated by about 35 percent from the 4-year mean, ranging from 429 to 844 millimeters per year at Odessa and 359 to 791 millimeters per year at Gothenburg. Of this precipitation, 14 to 15 percent was intercepted by the forest canopy before it could infiltrate into the soil. For the 4-year period, annual ground-water recharge from the riparian measurement zone averaged 76 and 13 millimeters at Odessa and Gothenburg, respectively, to satisfy the water balance at each site. This indicates that, from an annual perspective, ground-water reductions caused by ET may be minimal. This effect varied somewhat and primarily was affected by fluctuations in precipitation. Ground-water discharge occurred during the driest study year (2002), whereas ground-water recharge occurred from 2003 to 2005. These results do not exclude ground water as an important source of water to riparian vegetation—especially to phreatophytes that have the capability of directly using water from the saturated zone—during periods of high ET in the summer, particularly during periods of lower than normal precipitation. However, the calculations indicate that, on an annual (or longer) net-flux basis, ground-water use by riparian forests is likely to be balanced by periods of recharge from excess precipitation at other times of the year. In contrast to more arid settings, where scientific literature indicates that ground water may supply a large fraction of the water used for ET by riparian vegetation, precipitation along the Platte River of Nebraska was great enough—and generally greater than ET—that most or all of the annual ET demand was satisfied by available precipitation. Crop coefficients developed for 15-day and monthly periods from the measured data predicted ET within 3.5 percent of actual annual ET; however, daily ET was underpredicted on days of increased ET and overpredicted on days of low ET. These crop coefficients can be used to extrapolate riparian-forest ET along the Platte River in conjunction with atmospheric data from other climate stations in central Nebraska. Regression models of simple and multiple-linear relations between explanatory variables and ET indicated that the relation of ET to environmental factors was different on days with precipitation than on dry days. At Odessa, ET was affected by vapor-pressure deficit, solar radiation, leaf-area index, and depth to water regardless of precipitation conditions, but was also affected by air temperature on days without precipitation, suggesting energy limitations on ET on days without precipitation. At Gothenburg, ET was always a function of vapor-pressure deficit, solar radiation, and leaf-area index, but, as with Odessa, air temperature also became important on days without precipitation. Despite depths to ground water of less than 2 meters and phreatophytic vegetation, measured ET was substantially less than potential ET (based on the modified Penman method), consistent with plant-stomatal regulation of ET in response to environmental and meteorological factors. Although annual ET rates generally were similar, the two sites exhibited different intraannual soil-moisture regimes that had a corresponding effect on ET and vegetation vigor. Smaller seasonal declines in ground-water levels and a lack of understory shrubs at the Gothenburg site as compared to the Odessa site may explain why Gothenburg ET was comparatively greater later in the summer and was not dependent on depth to water (as identified by the multiple-linear regression model). These differences also may explain why, during years of increased precipitation, ET rates increased at Odessa but not at Gothenburg

    Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002–06

    Get PDF
    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable than precipitation. Annual ET fluctuated about 7 percent from the 4-year mean, ranging from about 514 to 586 millimeters per year (551 on average) at the Odessa site and 535 to 616 millimeters per year (575 on average) at the Gothenburg site. Conversely, annual precipitation fluctuated by about 35 percent from the 4-year mean, ranging from 429 to 844 millimeters per year at Odessa and 359 to 791 millimeters per year at Gothenburg. Of this precipitation, 14 to 15 percent was intercepted by the forest canopy before it could infiltrate into the soil. For the 4-year period, annual ground-water recharge from the riparian measurement zone averaged 76 and 13 millimeters at Odessa and Gothenburg, respectively, to satisfy the water balance at each site. This indicates that, from an annual perspective, ground-water reductions caused by ET may be minimal. This effect varied somewhat and primarily was affected by fluctuations in precipitation. Ground-water discharge occurred during the driest study year (2002), whereas ground-water recharge occurred from 2003 to 2005. These results do not exclude ground water as an important source of water to riparian vegetation—especially to phreatophytes that have the capability of directly using water from the saturated zone—during periods of high ET in the summer, particularly during periods of lower than normal precipitation. However, the calculations indicate that, on an annual (or longer) net-flux basis, ground-water use by riparian forests is likely to be balanced by periods of recharge from excess precipitation at other times of the year. In contrast to more arid settings, where scientific literature indicates that ground water may supply a large fraction of the water used for ET by riparian vegetation, precipitation along the Platte River of Nebraska was great enough—and generally greater than ET—that most or all of the annual ET demand was satisfied by available precipitation. Crop coefficients developed for 15-day and monthly periods from the measured data predicted ET within 3.5 percent of actual annual ET; however, daily ET was underpredicted on days of increased ET and overpredicted on days of low ET. These crop coefficients can be used to extrapolate riparian-forest ET along the Platte River in conjunction with atmospheric data from other climate stations in central Nebraska. Regression models of simple and multiple-linear relations between explanatory variables and ET indicated that the relation of ET to environmental factors was different on days with precipitation than on dry days. At Odessa, ET was affected by vapor-pressure deficit, solar radiation, leaf-area index, and depth to water regardless of precipitation conditions, but was also affected by air temperature on days without precipitation, suggesting energy limitations on ET on days without precipitation. At Gothenburg, ET was always a function of vapor-pressure deficit, solar radiation, and leaf-area index, but, as with Odessa, air temperature also became important on days without precipitation. Despite depths to ground water of less than 2 meters and phreatophytic vegetation, measured ET was substantially less than potential ET (based on the modified Penman method), consistent with plant-stomatal regulation of ET in response to environmental and meteorological factors. Although annual ET rates generally were similar, the two sites exhibited different intraannual soil-moisture regimes that had a corresponding effect on ET and vegetation vigor. Smaller seasonal declines in ground-water levels and a lack of understory shrubs at the Gothenburg site as compared to the Odessa site may explain why Gothenburg ET was comparatively greater later in the summer and was not dependent on depth to water (as identified by the multiple-linear regression model). These differences also may explain why, during years of increased precipitation, ET rates increased at Odessa but not at Gothenburg
    • …
    corecore