362 research outputs found

    Observation of a topological edge state stabilized by dissipation

    Full text link
    Robust states emerging at the boundary of a system constitute a hallmark for topological band structures. Other than in closed systems, topologically protected states can occur even in systems with a trivial band structure, if exposed to suitably modulated losses. Here, we study the dissipation-induced emergence of a topological band structure in a non-Hermitian one-dimensional lattice system, realized by arrays of plasmonic waveguides with tailored loss. We obtain direct evidence for a topological edge state that resides in the center of the band gap. By tuning dissipation and hopping, the formation and breakdown of an interface state between topologically distinct regions is demonstrated.Comment: 9 pages, 6 figure

    Using SPARK as a Solver for Modelica

    Get PDF
    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica

    Molecular characterization of the viaB locus encoding the biosynthetic machinery for Vi capsule formation in Salmonella Typhi

    Get PDF
    The Vi capsular polysaccharide (CPS) of Salmonella enterica serovar Typhi, the cause of human typhoid, is important for infectivity and virulence. The Vi biosynthetic machinery is encoded within the viaB locus composed of 10 genes involved in regulation of expression (tviA), polymer synthesis (tviB-tviE), and cell surface localization of the CPS (vexA-vexE). We cloned the viaB locus from S. Typhi and transposon insertion mutants of individual viaB genes were characterized in Escherichia coli DH5α. Phenotype analysis of viaB mutants revealed that tviB, tviC, tviD and tviE are involved in Vi polymer synthesis. Furthermore, expression of tviB-tviE in E. coli DH5α directed the synthesis of cytoplasmic Vi antigen. Mutants of the ABC transporter genes vexBC and the polysaccharide copolymerase gene vexD accumulated the Vi polymer within the cytoplasm and productivity in these mutants was greatly reduced. In contrast, de novo synthesis of Vi polymer in the export deficient vexA mutant was comparable to wild-type cells, with drastic effects on cell stability. VexE mutant cells exported the Vi, but the CPS was not retained at the cell surface. The secreted polymer of a vexE mutant had different physical characteristics compared to the wild-type Vi

    Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Full text link
    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time
    • …
    corecore