37 research outputs found

    Beliefs as Self-Sustaining Networks: Drawing Parallels Between Networks of Ecosystems and Adults’ Predictions

    Get PDF
    In this paper, we argue that beliefs share common properties with the self-sustaining networks of complex systems. Matching experiences are said to couple with each other into a mutually reinforcing network. The goal of the current paper is to spell out and develop these ideas, using our understanding of ecosystems as a guide. In Part 1 of the paper, we provide theoretical considerations relevant to this new conceptualization of beliefs, including the theoretical overlap between energy and meaning. In Part 2, we discuss the implications of this new conceptualization on our understanding of belief emergence and belief change. Finally, in Part 3, we provide an analytical mapping between beliefs and the self-sustaining networks of ecosystems, namely by applying to behavioral data a measure developed for ecosystem networks. Specifically, average accuracies were subjected to analyses of uncertainty (H) and average mutual information (AMI). The ratio between these two values yields degree of order, a measure of how organized the self-sustained network is. Degree of order was tracked over time and compared to the amount of explained variance returned by a categorical nonlinear principal components analysis (CATPCA). Finding high correspondence between the two measures of order, together with the theoretical groundwork discussed in Parts 1 and 2, lends preliminary validity to our theory that beliefs have important similarities to the structural characteristics of self-sustaining networks

    The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems

    Get PDF
    In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models orin vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starchgranules was measured using both glucose and reducing sugar assays. Data were analysed through initialrates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potatorequired more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates

    RUNX super-enhancer control through the Notch pathway by Epstein-Barr virus transcription factors regulates B cell growth

    Get PDF
    In B cells infected by the cancer-associated Epstein-Barr virus (EBV), RUNX3 and RUNX1 transcription is manipulated to control cell growth. The EBV-encoded EBNA2 transcription factor (TF) activates RUNX3 transcription leading to RUNX3-mediated repression of the RUNX1 promoter and the relief of RUNX1-directed growth repression. We show that EBNA2 activates RUNX3 through a specific element within a −97 kb super-enhancer in a manner dependent on the expression of the Notch DNA-binding partner RBP-J. We also reveal that the EBV TFs EBNA3B and EBNA3C contribute to RUNX3 activation in EBV-infected cells by targeting the same element. Uncovering a counter-regulatory feed-forward step, we demonstrate EBNA2 activation of a RUNX1 super-enhancer (−139 to −250 kb) that results in low-level RUNX1 expression in cells refractory to RUNX1-mediated growth inhibition. EBNA2 activation of the RUNX1 super-enhancer is also dependent on RBP-J. Consistent with the context-dependent roles of EBNA3B and EBNA3C as activators or repressors, we find that these proteins negatively regulate the RUNX1 super-enhancer, curbing EBNA2 activation. Taken together our results reveal cell-type-specific exploitation of RUNX gene super-enhancers by multiple EBV TFs via the Notch pathway to fine tune RUNX3 and RUNX1 expression and manipulate B-cell growth

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation

    No full text
    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the C-C bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the C-C bond formation, while the ability for C-C bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for C-C bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant

    Extended substrate range of thiamine diphosphate-dependent MenD enzyme by coupling of two C–C-bonding reactions

    No full text
    Carboligations catalyzed by aldolases or thiamine diphosphate (ThDP)-dependent enzymes are well-known in biocatalysis to deliver enantioselective chain elongation reactions. A pyruvate-dependent aldolase (2-oxo-3-deoxy-6-phosphogluconate aldolase [EDA]) introduces a chiral center when reacting with the electrophile, glyoxylic acid, delivering the (S)-enantiomer of (4S)-4-hydroxy-2-oxoglutarate [(S)-HOG]. The ThDP-dependent enzyme MenD (2-succinyl-5-enol-pyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (SEPHCHC synthase)) enables access to highly functionalized substances by forming intermolecular C?C bonds with Michael acceptor compounds by a Stetter-like 1,4- or a benzoin-condensation 1,2-addition of activated succinyl semialdehyde (ThDP adduct formed by decarboxylation of 2-oxoglutarate). MenD-catalyzed reactions are characterized by high chemo- and regioselectivity. Here, we report (S)-HOG, in situ formed by EDA, to serve as new donor substrate for MenD in 1,4-addition reactions with 2,3-trans-CHD (2,3-trans-dihydroxy-cyclohexadiene carboxylate) and acrylic acid. Likewise, (S)-HOG serves as donor in 1,2-additions with aromatic (benzaldehyde) and aliphatic (hexanal) aldehydes. This enzyme cascade of two subsequent C?C bond formations (EDA aldolase and a ThDP-dependent carboligase, MenD) generates two new stereocenters.Fil: Schapfl, Matthias. UniversitĂ€t Stuttgart; AlemaniaFil: Baier, Shiromi. UniversitĂ€t Stuttgart; AlemaniaFil: Fries, Alexander Erich. Albert Ludwigs University of Freiburg; Alemania. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Ferlaino, Sascha. Albert Ludwigs University of Freiburg; AlemaniaFil: Waltzer, Simon. Albert Ludwigs University of Freiburg; AlemaniaFil: MĂŒller, Michael. Albert Ludwigs University of Freiburg; AlemaniaFil: Sprenger, Georg A.. UniversitĂ€t Stuttgart; Alemani

    TCA Cycle Involved Enzymes SucA and Kgd, as well as MenD: Efficient Biocatalysts for Asymmetric C–C Bond Formation

    No full text
    Asymmetric mixed carboligation reactions of α-ketoglutarate with different aldehydes were explored with the thiamine diphosphate dependent enzymes SucA from <i>E. coli</i>, Kgd from <i>Mycobacterium tuberculosis</i>, and MenD from <i>E. coli</i>. All three enzymes proved to be efficient biocatalysts to selectively deliver chiral Ύ-hydroxy-γ-keto acids with moderate to excellent stereoselectivity. The high regioselectivity is due to the preserved role of α-ketoglutarate as acyl donor for these enzyme-catalyzed reactions

    A Genome-Wide RNA Interference Screen Identifies a Differential Role of the Mediator CDK8 Module Subunits for GATA/ RUNX-Activated Transcription in Drosophila▿ §

    No full text
    Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals
    corecore