429 research outputs found

    Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts

    Get PDF
    The homotrimeric DNA replication protein proliferating cell nuclear antigen (PCNA) is regulated by both ubiquitylation and sumoylation. We study the appearance and the impact of these modifications on chromosomal replication in frog egg extracts. Xenopus laevis PCNA is modified on lysine 164 by sumoylation, monoubiquitylation, and diubiquitylation. Sumoylation and monoubiquitylation occur during the replication of undamaged DNA, whereas diubiquitylation occurs specifically in response to DNA damage. When lysine 164 modification is prevented, replication fork movement through undamaged DNA slows down and DNA polymerase δ fails to associate with replicating chromatin. When sumoylation alone is prevented, replication occurs normally and neither monoubiquitylation nor sumoylation are required for the replication of simple single-strand DNA templates. Our findings expand the repertoire of functions for PCNA ubiquitylation and sumoylation by elucidating a role for these modifications during the replication of undamaged DNA. Furthermore, they suggest that PCNA monoubiquitylation serves as a molecular gas pedal that controls the speed of replisome movement during S phase

    Methods for evaluating gene expression from Affymetrix microarray datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Affymetrix high density oligonucleotide expression arrays are widely used across all fields of biological research for measuring genome-wide gene expression. An important step in processing oligonucleotide microarray data is to produce a single value for the gene expression level of an RNA transcript using one of a growing number of statistical methods. The challenge for the researcher is to decide on the most appropriate method to use to address a specific biological question with a given dataset. Although several research efforts have focused on assessing performance of a few methods in evaluating gene expression from RNA hybridization experiments with different datasets, the relative merits of the methods currently available in the literature for evaluating genome-wide gene expression from Affymetrix microarray data collected from real biological experiments remain actively debated.</p> <p>Results</p> <p>The present study reports a comprehensive survey of the performance of all seven commonly used methods in evaluating genome-wide gene expression from a well-designed experiment using Affymetrix microarrays. The experiment profiled eight genetically divergent barley cultivars each with three biological replicates. The dataset so obtained confers a balanced and idealized structure for the present analysis. The methods were evaluated on their sensitivity for detecting differentially expressed genes, reproducibility of expression values across replicates, and consistency in calling differentially expressed genes. The number of genes detected as differentially expressed among methods differed by a factor of two or more at a given false discovery rate (FDR) level. Moreover, we propose the use of genes containing single feature polymorphisms (SFPs) as an empirical test for comparison among methods for the ability to detect true differential gene expression on the basis that SFPs largely correspond to <it>cis</it>-acting expression regulators. The PDNN method demonstrated superiority over all other methods in every comparison, whilst the default Affymetrix MAS5.0 method was clearly inferior.</p> <p>Conclusion</p> <p>A comprehensive assessment of seven commonly used data extraction methods based on an extensive barley Affymetrix gene expression dataset has shown that the PDNN method has superior performance for the detection of differentially expressed genes.</p

    AKT/mTORC2 inhibition activates FOXO1 function in CLL cells reducing B cell receptor-mediated survival

    Get PDF
    Purpose: To determine whether inhibition of mechanistic target of rapamycin (mTOR) kinase-mediated signaling represents a valid therapeutic approach for chronic lymphocytic leukemia (CLL). Experimental Design: Stratification of mTOR activity was carried out in primary CLL patient samples and an aggressive CLL-like mouse model. The potency of dual mTOR inhibitor AZD8055 to induce apoptosis in primary CLL cells was assessed in the presence/absence of B cell receptor (BCR) ligation. Furthermore, we addressed the molecular and functional impact of dual mTOR inhibition in combination with BTK inhibitor ibrutinib. Results: Differential regulation of basal mTORC1 activity was observed in poor prognostic CLL samples, with elevated p4EBP1T37/46 and decreased p70S6 kinase activity, suggesting that dual mTORC1/2 inhibitors may exhibit improved response in poor prognostic CLL compared with rapalogs. AZD8055 treatment of primary CLL cells significantly reduced CLL survival in vitro compared with rapamycin, preferentially targeting poor prognostic subsets and overcoming BCR-mediated survival advantages. Furthermore, AZD8055, and clinical analog AZD2014, significantly reduced CLL tumor load in mice. AKT substrate FOXO1, while overexpressed in CLL cells of poor prognostic patients in LN biopsies, peripheral CLL cells, and mouse-derived CLL-like cells, appeared to be inactive. AZD8055 treatment partially reversed FOXO1 inactivation downstream of BCR crosslinking, significantly inhibiting FOXO1T24 phosphorylation in an mTORC2-AKT-dependent manner, to promote FOXO1 nuclear localization, activity and FOXO1-mediated gene regulation. FOXO1 activity was further significantly enhanced on combining AZD8055 with ibrutinib. Conclusions: Our studies demonstrate that dual mTOR inhibitors show promise as future CLL therapies, particularly in combination with ibrutinib

    Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

    Full text link
    Objective: We compared six commonly used logistic regression methods for accommodating missing risk factor data from multiple heterogeneous cohorts, in which some cohorts do not collect some risk factors at all, and developed an online risk prediction tool that accommodates missing risk factors from the end-user. Study Design and Setting: Ten North American and European cohorts from the Prostate Biopsy Collaborative Group (PBCG) were used for fitting a risk prediction tool for clinically significant prostate cancer, defined as Gleason grade group greater or equal 2 on standard TRUS prostate biopsy. One large European PBCG cohort was withheld for external validation, where calibration-in-the-large (CIL), calibration curves, and area-underneath-the-receiver-operating characteristic curve (AUC) were evaluated. Ten-fold leave-one-cohort-internal validation further validated the optimal missing data approach. Results: Among 12,703 biopsies from 10 training cohorts, 3,597 (28%) had clinically significant prostate cancer, compared to 1,757 of 5,540 (32%) in the external validation cohort. In external validation, the available cases method that pooled individual patient data containing all risk factors input by an end-user had best CIL, under-predicting risks as percentages by 2.9% on average, and obtained an AUC of 75.7%. Imputation had the worst CIL (-13.3%). The available cases method was further validated as optimal in internal cross-validation and thus used for development of an online risk tool. For end-users of the risk tool, two risk factors were mandatory: serum prostate-specific antigen (PSA) and age, and ten were optional: digital rectal exam, prostate volume, prior negative biopsy, 5-alpha-reductase-inhibitor use, prior PSA screen, African ancestry, Hispanic ethnicity, first-degree prostate-, breast-, and second-degree prostate-cancer family history

    Professional Development and the Informal Curriculum in End-of-Life Care

    Get PDF
    Although professionalism has emerged as a key competency for today’s physicians, there exists little insight into how best to teach medical students the relevant skills or instill in them the commitment required to practice according to the highest professional standards. Ten UCSF medical students were interviewed at three time points (second, third, and fourth years of school). Interviews focused on students’ learning and development regarding end-of-life care (EOLC). Students described varying steps in their professional development from their second to fourth years of school, including feeling confused about the definition of professionalism and integrating their personal and professional identities. In addition to professional development, four other themes contributed to the development of medical student understanding of how to provide EOLC as a professional: (1) curricular discordance, (2) role models, (3) the tightrope between trained versus human reactions, and (4) ethical dilemmas. These five themes represent dilemmas that students often learned how to respond to over the course of school. Professional development in EOLC required the acquisition of skills necessary to balance the tension between and navigate conflicting messages present in medical student training

    Cytosolic phospholipase A2α–deficient mice are resistant to experimental autoimmune encephalomyelitis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE), a Th1-mediated inflammatory disease of the central nervous system (CNS), is a model of human multiple sclerosis. Cytosolic phospholipase A2α (cPLA2α), which initiates production of prostaglandins, leukotrienes, and platelet-activating factor, is present in EAE lesions. Using myelin oligodendrocyte glycoprotein (MOG) immunization, as well as an adoptive transfer model, we showed that cPLA2α−/− mice are resistant to EAE. Histologic examination of the CNS from MOG-immunized mice revealed extensive inflammatory lesions in the cPLA2α+/− mice, whereas the lesions in cPLA2α−/− mice were reduced greatly or completely absent. MOG-specific T cells generated from WT mice induced less severe EAE in cPLA2α−/− mice compared with cPLA2α+/− mice, which indicates that cPLA2α plays a role in the effector phase of EAE. Additionally, MOG-specific T cells from cPLA2α−/− mice, transferred into WT mice, induced EAE with delayed onset and lower severity compared with EAE that was induced by control cells; this indicates that cPLA2α also plays a role in the induction phase of EAE. MOG-specific T cells from cPLA2α−/− mice were deficient in production of Th1-type cytokines. Consistent with this deficiency, in vivo administration of IL-12 rendered cPLA2α−/− mice susceptible to EAE. Our data indicate that cPLA2α plays an important role in EAE development and facilitates differentiation of T cells toward the Th1 phenotype

    Facilitates Chromatin Transcription Complex Is an “Accelerator” of Tumor Transformation and Potential Marker and Target of Aggressive Cancers

    Get PDF
    SummaryThe facilitates chromatin transcription (FACT) complex is involved in chromatin remodeling during transcription, replication, and DNA repair. FACT was previously considered to be ubiquitously expressed and not associated with any disease. However, we discovered that FACT is the target of a class of anticancer compounds and is not expressed in normal cells of adult mammalian tissues, except for undifferentiated and stem-like cells. Here, we show that FACT expression is strongly associated with poorly differentiated aggressive cancers with low overall survival. In addition, FACT was found to be upregulated during in vitro transformation and to be necessary, but not sufficient, for driving transformation. FACT also promoted survival and growth of established tumor cells. Genome-wide mapping of chromatin-bound FACT indicated that FACT’s role in cancer most likely involves selective chromatin remodeling of genes that stimulate proliferation, inhibit cell death and differentiation, and regulate cellular stress responses
    corecore