872 research outputs found

    Erodibility Evaluation of an Unlined Rock Spillway: Comparison Between the Erodibility Index Method and a New Method Based on Block Theory

    Get PDF
    Following the 2017 events at the Oroville Dam spillways that prompted evacuation of nearly 200,000 downstream residents and resulted in over $1B USD repair costs, there is highlighted focus on evaluation of spillways (both lined and unlined) at dams across the USA. In the case of unlined channels, flow conditions are often complex which presents several challenges for erodibility evaluation given methods are often based on idealized circumstances. High-resolution data available for the site (both in terms of 3D point cloud geometry data for the rock mass and 3D CFD model simulations of flow conditions) permitted a more detailed analysis of the scouring process, which ultimately provided deeper insight into scour potential. Two methods were used for the analysis; the semi-empirical Erodibility Index Method and a new, physics-based method using Block Theory, and a comparison between the two was made yielding informative results

    Experimental Study of Parametric Autoresonance in Faraday Waves

    Full text link
    The excitation of large amplitude nonlinear waves is achieved via parametric autoresonance of Faraday waves. We experimentally demonstrate that phase locking to low amplitude driving can generate persistent high-amplitude growth of nonlinear waves in a dissipative system. The experiments presented are in excellent agreement with theory.Comment: 4 pages, 4 eps figures, to appear in Phys. Rev. Let

    UCE: A uracil excision (USERâ„¢)-based toolbox for transformation of cereals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cloning of gene casettes and other DNA sequences into the conventional vectors for biolistic or <it>Agrobacterium</it>-mediated transformation is hampered by a limited amount of unique restriction sites and by the difficulties often encountered when ligating small single strand DNA overhangs. These problems are obviated by "The Uracil Specific Excision Reagent (USERâ„¢)" technology (New England Biolabs) which thus offers a new and very time-efficient method for engineering of big and complex plasmids.</p> <p>Results</p> <p>By application of the USERâ„¢ system, we engineered a collection of binary vectors, termed UCE (USER cereal), ready for use in cloning of complex constructs into the T-DNA. A series of the vectors were tested and shown to perform successfully in <it>Agrobacterium</it>-mediated transformation of barley (<it>Hordeum vulgare </it>L.) as well as in biolistic transformation of endosperm cells conferring transient expression.</p> <p>Conclusions</p> <p>The USERâ„¢ technology is very well suited for generating a toolbox of vectors for transformation and it opens an opportunity to engineer complex vectors, where several genetic elements of different origin are combined in a single cloning reaction.</p

    Redshifts and Velocity Dispersions of Galaxy Clusters in the Horologium-Reticulum Supercluster

    Get PDF
    We present 118 new optical redshifts for galaxies in 12 clusters in the Horologium-Reticulum supercluster (HRS) of galaxies. For 76 galaxies, the data were obtained with the Dual Beam Spectrograph on the 2.3m telescope of the Australian National University at Siding Spring Observatory. After combining 42 previously unpublished redshifts with our new sample, we determine mean redshifts and velocity dispersions for 13 clusters, in which previous observational data were sparse. In six of the 13 clusters, the newly determined mean redshifts differ by more than 750 km/s from the published values. In the case of three clusters, A3047, A3109, and A3120, the redshift data indicate the presence of multiple components along the line of sight. The new cluster redshifts, when combined with other reliable mean redshifts for clusters in the HRS, are found to be distinctly bi-modal. Furthermore, the two redshift components are consistent with the bi-modal redshift distribution found for the inter-cluster galaxies in the HRS by Fleenor et al. (2005).Comment: 13 pages, 3 figures, Accepted to A

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    Community-Acquired Pneumonia Due to Pandemic A(H1N1)2009 Influenzavirus and Methicillin Resistant Staphylococcus aureus Co-Infection

    Get PDF
    BACKGROUND: Bacterial pneumonia is a well described complication of influenza. In recent years, community-onset methicillin-resistant Staphylococcus aureus (cMRSA) infection has emerged as a contributor to morbidity and mortality in patients with influenza. Since the emergence and rapid dissemination of pandemic A(H1N1)2009 influenzavirus in April 2009, initial descriptions of the clinical features of patients hospitalized with pneumonia have contained few details of patients with bacterial co-infection. METHODOLOGY/PRINCIPAL FINDINGS: Patients with community-acquired pneumonia (CAP) caused by co-infection with pandemic A(H1N1)2009 influenzavirus and cMRSA were prospectively identified at two tertiary hospitals in one Australian city during July to September 2009, the period of intense influenza activity in our region. Detailed characterization of the cMRSA isolates was performed. 252 patients with pandemic A(H1N1)2009 influenzavirus infection were admitted at the two sites during the period of study. Three cases of CAP due to pandemic A(H1N1)2009/cMRSA co-infection were identified. The clinical features of these patients were typical of those with S. aureus co-infection or sequential infection following influenza. The 3 patients received appropriate empiric therapy for influenza, but inappropriate empiric therapy for cMRSA infection; all 3 survived. In addition, 2 fatal cases of CAP caused by pandemic A(H1N1)2009/cMRSA co-infection were identified on post-mortem examination. The cMRSA infections were caused by three different cMRSA clones, only one of which contained genes for Panton-Valentine Leukocidin (PVL). CONCLUSIONS/SIGNIFICANCE: Clinicians managing patients with pandemic A(H1N1)2009 influenzavirus infection should be alert to the possibility of co-infection or sequential infection with virulent, antimicrobial-resistant bacterial pathogens such as cMRSA. PVL toxin is not necessary for the development of cMRSA pneumonia in the setting of pandemic A( H1N1) 2009 influenzavirus co-infection

    Fundamental Properties of Kepler Planet-Candidate Host Stars using Asteroseismology

    Get PDF
    We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size, or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters, or due to planet candidates which may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.Comment: 19 pages, 10 figures, 4 tables; accepted for publication in ApJ; machine-readable versions of tables 1-3 are available as ancillary files or in the source code; v2: minor changes to match published versio

    K2 Discovers a Busy Bee: An Unusual Transiting Neptune Found in the Beehive Cluster

    Full text link
    Open clusters have been the focus of several exoplanet surveys but only a few planets have so far been discovered. The \emph{Kepler} spacecraft revealed an abundance of small planets around small, cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp=15.5 mag\mathrm{Kp = 15.5\,mag}) M3.0±0.5\mathrm{M3.0\pm0.5} dwarf from K2's Campaign 5 with an effective temperature of 3471±124 K\mathrm{3471 \pm 124\,K}, approximately solar metallicity and a radius of 0.402±0.050 R⊙\mathrm{0.402 \pm 0.050 \,R_\odot}. We detected a transiting planet with a radius of 3.47−0.53+0.78 R⊕\mathrm{3.47^{+0.78}_{-0.53} \, R_\oplus} and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging and archival survey images to rule out any false positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.Comment: 14 pages, 8 figues. Accepted for publication in A
    • …
    corecore