5,257 research outputs found
A complete identification of lithium sites in a model of LiPO glass: effects of the local structure and energy landscape on ionic jump dynamics
We perform molecular dynamics simulations to study lithium dynamics in a
model of LiPO glass at temperatures below the glass transition. A
straightforward analysis of the ionic trajectories shows that lithium diffusion
results from jumps between sites that are basically unmodified on the time
scale of the lithium ionic relaxation. This allows us a detailed identification
and characterization of the sites. The results indicate that the number of
lithium sites is only slightly bigger than the number of lithium ions so that
the fraction of vacant sites is very limited at every instant. Mapping the
ionic trajectories onto series of jumps between the sites provides direct
access to lithium jump dynamics. For each site, we determine the mean residence
time and the probability that a jump from this site to another
site is followed by a direct backjump. While a broad distribution shows that different sites feature diverse lithium dynamics, high
values of give direct evidence for back-and-forth jumps. We further
study how the local glass structure and the local energy landscape affect
lithium jump dynamics. We observe substantial effects due to the energy
landscape, which are difficult to capture within single-particle approaches.Comment: 10 pages, 8 figure
Conformational phase diagram for polymers adsorbed at ultrathin nanowires
We study the conformational behavior of a polymer adsorbed at an attractive
nanostring and construct the complete structural phase diagram in dependence of
the binding strength and effective thickness of the string. For this purpose,
Monte Carlo optimization techniques are employed to identify lowest-energy
structures for a coarse-grained hybrid polymer-wire model. Among the
representative conformations in the different phases are, for example, compact
droplets attached to the string and also nanotube-like monolayer films wrapping
the string in a very ordered way. We here systematically analyze low-energy
shapes and structural order parameters to elucidate the transitions between the
structural phases
Accurate modeling approach for the structural comparison between monolayer polymer tubes and single-walled nanotubes
In a recent computational study, we found highly structured ground states for
coarse-grained polymers adsorbed to ultrathin nanowires in a certain model
parameter region. Those tubelike configurations show, even at a first glance,
exciting morphological similarities to known atomistic nanotubes such as
single-walled carbon nanotubes. In order to explain those similarities in a
systematic way, we performed additional detailed and extensive simulations of
coarse-grained polymer models with various parameter settings.
We show this here and explain why standard geometrical models for atomistic
nanotubes are not suited to interpret the results of those studies. In fact,
the general structural behavior of polymer nanotubes, as well as specific
previous observations, can only be explained by applying recently developed
polyhedral tube models.Comment: Proceedings of the 24th Workshop on Recent Developments in Computer
Simulation Studies in Condensed Matter Physics, Feb 21-25, 2011, Athens,
Georgia, US
Thermodynamics of tubelike flexible polymers
In this work we present the general phase behavior of short tubelike flexible
polymers. The geometric thickness constraint is implemented through the concept
of the global radius of curvature. We use sophisticated Monte Carlo sampling
methods to simulate small bead-stick polymer models with Lennard-Jones
interaction among non-bonded monomers. We analyze energetic fluctuations and
structural quantities to classify conformational pseudophases. We find that the
tube thickness influences the thermodynamic behavior of simple tubelike
polymers significantly, i.e., for given temperature, the formation of secondary
structures strongly depends on the tube thickness
Synthesis of aluminum nitride thin films utilizing magnetron sputtering on diamond for potential pseudo surface acoustic wave applications
In der vorliegenden Dissertation wurden qualitativ hochwertige, piezoelektrische AlN-Schichtenhergestellt und deren Eignung als SAW-Sensormaterial untersucht. FĂŒr die Synthese der Schichten wurde das reaktive Radiofrequenz-Magnetron-Sputtern von hochreinem Aluminium unter Beimischung von N2 verwendet. Zur Bestimmung der optimalen Wachstumsbedingungen und zur StrukturaufklĂ€rung wurden Beschichtungsparameter-Studienim Zusammenhang mit umfangreichen Charakterisierungsmethoden durchgefĂŒhrt. Die Parameterstudien umfassten die RF-Leistung, Substrattemperatur, Gaszusammensetzung (Ar:N2-VerhĂ€ltnis) und den Prozessdruck. Qualitativ hochwertige, (002)-fasertexturierte AlNSchichten wurden bei Raumtemperatur in reiner N2-AtmosphĂ€re hergestellt. Die Schichten sind vollstĂ€ndig c-Achsen orientiert mit einer Halbwertsbreite der (002)-AlN-Rockingkurve von 0,1°. Es sind Schichtdicken bis 6,6 µm mit einer OberflĂ€chenrauheit von weniger als 2 nm hergestellt worden. Mittels Nanoindentierung bestimmt, weisen die Schichten eine HĂ€rte von 21,8 GPa und einen E-Modul von 338 GPa auf. Die SAW-, SLAW- und Transversal-Geschwindigkeiten wurden mit 5,7 km / s, 10,9 km / s bzw. 6,7 km / s mittels
Rasterultraschallmikroskopie bestimmt. FĂŒr den Aufbau einer PSAW-Teststruktur wurden mittels Mikrowellenplasma-unterstĂŒtzter CVD hergestellte, polierte, nanokristalline Diamantschichten (NCD) als Substratmaterial fĂŒr die AlN-Abscheidung verwendet. Die nötige AlN-Schichtdicke fĂŒr die Anregung von PSAW-Moden wurde simuliert und erfolgreich realisiert. Zur Erzeugung der OberflĂ€chenwellen wurden IDT-Strukturen mittels FIB-SEM sowohl durch Pt-Abscheidung als auch mittels Elektronenstrahllithographie hergestellt. Es wurde eine Symmetrische Kammstruktur mit einer Fingerbreite und âabstand von jeweils 2 µm gewĂ€hlt, was einer WellenlĂ€nge von 8 µm entspricht. GemÀà Simulation ergibt sich daraus eine AlN-Schichtdicke von 720 nm zum Erreichen der ersten PSAW-Mode. Die als SAW-Filter angeordneten IDTs zeigten bei den Messungen mittels Frequenzgeber und Oszilloskop eine Resonanzfrequenz von 1 GHz im AlN-Si-System und 2 GHz im AlN-NCD-System. Die dazugehörige Phasengeschwindigkeit der PSAWs ist 8,2 km / s und 16,1 km / s im Falle des AlN-Si- bzw. AlN-NCD-Systems. Die Simulation stimmt mit den hier gemessenen Werten mit einer Abweichung von nur 1 % ĂŒberein und bestĂ€tigt die erfolgreiche Anregung von PSAWModen.
Die hier gefundenen Ergebnisse zeigen die Ăberlegenheit der Materialkombination AlN-NCD gegenĂŒber anderen Piezomaterialien. Zusammen mit der Möglichkeit beide Materialien in Form von Schichten herzustellen, erweitert das deren Einsatzgebiete immens, da die Substrat-Schichtkombination nahezu beliebig ist.In this dissertation high quality, piezoelectrical AlN coatings were synthesized and their suitability as SAW sensor material have been tested. For thin film synthesis reactive radiofrequency magnetron sputtering of high purity aluminum in a N2 atmosphere was utilized.
For the optimization of the growth mechanisms and to elucidate the coatingsâ structure the process parameters in correlation to comprehensive materials characterization studies were carried out. In detail, the investigated process parameters were rf-power, substrate temperature, composition of process gases and the process pressure. High quality (002)-fibretextured AlN coatings were synthesized at room temperature in pure N2 atmosphere. These films were fully
c-axis oriented with a (002)-AlN-rocking-curve exhibiting 0.1° of full width at half maximum.
The thickness and surface roughness of the synthesized coatings were 6.6 µm and less than 2 nm, respectively. Measurements by means of nanoindentation displayed hardness values of 21.8 GPa and Youngâs modulus of 338 GPa. According to scanning acoustic microscopy the SAW-, SLAW-, and transversal-velocities were 5.7 km / s, 10.9 km / s and 6.7 km / s, respectively. To test the feasibility of PSAW devices based on AlN coatings, nanocrystalline,
polished diamond substrates, synthesized by microwave-plasma-enhanced CVD were utilized as substrate material. The AlN coatingsâ thickness was simulated and tested successfully to match the needs for a successful PSAW stimulation. To generate surface waves IDT structures were produced in a FIB-SEM by Platinum deposition and electron beam lithography. A symmetrical comb structure with finger thickness of 2 µm each have been chosen corresponding to a wavelength of 8 µm. As per simulation the AlN film thickness should be 720 nm for excitation of the first PSAW mode. The IDTs were arranged to work as a SAW filter showing a resonance frequency at 1 GHz in the case of AlN-Si-systems and 2 GHz in the case of AlN-NCD. Measurements were conducted by employing a frequency generator and an oscilloscope. The corresponding phase velocity of measured PSAWs were 8.2 km / s and 16.1 km / s in the case of AlN-Si and AlN-NCD, respectively. Simulation matched the measurements with a deviation of 1 % only, thus confirming the successful stimulation of the PSAW modes. The results found in this study present the advantage of AlN-NCD compared to other piezoelectric materials. Moreover, the possibility of combining the piezoelectric thin-film
material (AlN) with a variety of substrate materials tremendously extends its applications
Theism and Psychological Science: A Call for Rapprochement
The authors offer two arguments for the inclusion of theism in natural science. First, an argument against excluding theism is offered. Though early roots of science promoted a view that it is a way to accumulate knowledge that is untainted by presuppositions and traditions, postmodern critiques call this into question. Scientists have sometimes rejected religion as a context-dependent, tradition-based way of knowing, yet science itself is also context-dependent and tradition-based. Second, an argument for including theism in psychological is offered. Theistic beliefs are relevant insofar as they are part of human experience for many, they represent a form of human diversity, and they have been associated with some positive health outcomes
Temperature-dependent mechanisms for the dynamics of protein-hydration waters: a molecular dynamics simulation study
Molecular dynamics simulations are performed to study the
temperature-dependent dynamics and structures of the hydration shells of
elastin-like and collagen-like peptides. For both model peptides, it is
consistently observed that, upon cooling, the mechanisms for water dynamics
continuously change from small-step diffusive motion to large-step jump motion,
the temperature dependence of water dynamics shows a weak crossover from
fragile behavior to strong behavior, and the order of the hydrogen-bond network
increases. The temperature of the weak crossover from fragile to strong
behavior is found to coincide with the temperature at which maximum possible
order of the hydrogen-bond network is reached so that the structure becomes
temperature independent. In the strong regime, the temperature dependence of
water translation and rotational dynamics is characterized by an activation
energy of ca. E_a=0.43 eV, consistent with results from previous dielectric
spectroscopy and nuclear magnetic resonance studies on protein hydration
waters. At these temperatures, a distorted pi-flip motion about the twofold
molecular symmetry axes, i.e., a water-specific beta process is an important
aspect of water dynamics, at least at the water-peptide interfaces. In
addition, it is shown that the hydration waters exhibit pronounced dynamical
heterogeneities, which can be traced back to a strong slowdown of water motion
in the immediate vicinity of peptide molecules due to formation of
water-peptide hydrogen bonds.Comment: 9 pages,9 figure
- âŠ