32 research outputs found

    Supersymmetry in quantum optics and in spin-orbit coupled systems

    Get PDF
    Light-matter interaction is naturally described by coupled bosonic and fermionic subsystems. This suggests that a certain Bose-Fermi duality is naturally present in the fundamental quantum mechanical description of photons interacting with atoms. We reveal submanifolds in parameter space of a basic light-matter interacting system where this duality is promoted to a supersymmetry (SUSY) which remains unbroken. We show that SUSY is robust with respect to decoherence and dissipation. In particular, a stationary density matrix at the supersymmetric lines in the parameter space has a degenerate subspace. A dimension of this subspace is given by the Witten index and thus topologically protected. As a consequence of this SUSY, dissipative dynamics at the supersymmetric lines is constrained by an additional conserved quantity which translates some part of information about an initial state into the stationary state subspace. We also demonstrate a robustness of this additional conserved quantity away from the supersymmetric lines. In addition, we demonstrate that the same SUSY structures are present in condensed matter systems with spin-orbit couplings of Rashba and Dresselhaus types, and therefore spin-orbit coupled systems at the SUSY lines should be robust with respect to various types of disorder and decoherences. Our findings suggest that optical and condensed matter systems at the SUSY points can be used for quantum information technology and can open an avenue for quantum simulation of the SUSY field theories.Comment: 15 pages, 3 figure

    Enabling Adiabatic Passages Between Disjoint Regions in Parameter Space through Topological Transitions

    Full text link
    We explore topological transitions in parameter space in order to enable adiabatic passages between regions adiabatically disconnected within a given parameter manifold. To this end, we study the Hamiltonian of two coupled qubits interacting with external magnetic fields, and make use of the analogy between the Berry curvature and magnetic fields in parameter space, with spectrum degeneracies associated to magnetic charges. Symmetry-breaking terms induce sharp topological transitions on these charge distributions, and we show how one can exploit this effect to bypass crossing degeneracies. We also investigate the curl of the Berry curvature, an interesting but as of yet not fully explored object, which together with its divergence uniquely defines this field. Finally, we suggest a simple method for measuring the Berry curvature, thereby showing how one can experimentally verify our results.Comment: 17 pages, 11 figure

    Geodesic Paths for Quantum Many-Body Systems

    Full text link
    We propose a method to obtain optimal protocols for adiabatic ground-state preparation near the adiabatic limit, extending earlier ideas from [D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602 (2012)] to quantum non-dissipative systems. The space of controllable parameters of isolated quantum many-body systems is endowed with a Riemannian quantum metric structure, which can be exploited when such systems are driven adiabatically. Here, we use this metric structure to construct optimal protocols in order to accomplish the task of adiabatic ground-state preparation in a fixed amount of time. Such optimal protocols are shown to be geodesics on the parameter manifold, maximizing the local fidelity. Physically, such protocols minimize the average energy fluctuations along the path. Our findings are illustrated on the Landau-Zener model and the anisotropic XY spin chain. In both cases we show that geodesic protocols drastically improve the final fidelity. Moreover, this happens even if one crosses a critical point, where the adiabatic perturbation theory fails.Comment: 5 pages, 2 figures + 4 pages supplemen

    Geodesic paths for quantum many-body systems

    Full text link
    We propose a method to obtain optimal protocols for adiabatic ground-state preparation near the adiabatic limit, extending earlier ideas from [D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602 (2012)] to quantum non-dissipative systems. The space of controllable parameters of isolated quantum many-body systems is endowed with a Riemannian quantum metric structure, which can be exploited when such systems are driven adiabatically. Here, we use this metric structure to construct optimal protocols in order to accomplish the task of adiabatic ground-state preparation in a fixed amount of time. Such optimal protocols are shown to be geodesics on the parameter manifold, maximizing the local fidelity. Physically, such protocols minimize the average energy fluctuations along the path. Our findings are illustrated on the Landau-Zener model and the anisotropic XY spin chain. In both cases we show that geodesic protocols drastically improve the final fidelity. Moreover, this happens even if one crosses a critical point, where the adiabatic perturbation theory fails.http://meetings.aps.org/link/BAPS.2016.MAR.F50.9First author draf

    Exceptional and regular spectra of a generalized Rabi model

    Full text link
    We study the spectrum of the generalized Rabi model in which co- and counter-rotating terms have different coupling strengths. It is also equivalent to the model of a two-dimensional electron gas in a magnetic field with Rashba and Dresselhaus spin-orbit couplings. Like in case of the Rabi model, the spectrum of the generalized Rabi model consists of the regular and the exceptional parts. The latter is represented by the energy levels which cross at certain parameters' values which we determine explicitly. The wave functions of these exceptional states are given by finite order polynomials in the Bargmann representation. The roots of these polynomials satisfy a Bethe ansatz equation of the Gaudin type. At the exceptional points the model is therefore quasi-exactly solvable. An analytical approximation is derived for the regular part of the spectrum in the weak- and strong-coupling limits. In particular, in the strong-coupling limit the spectrum consists of two quasi-degenerate equidistant ladders.Comment: 15 pages, 9 figure

    Geometric phase contribution to quantum non-equilibrium many-body dynamics

    Get PDF
    We study the influence of geometry of quantum systems underlying space of states on its quantum many-body dynamics. We observe an interplay between dynamical and topological ingredients of quantum non-equilibrium dynamics revealed by the geometrical structure of the quantum space of states. As a primary example we use the anisotropic XY ring in a transverse magnetic field with an additional time-dependent flux. In particular, if the flux insertion is slow, non-adiabatic transitions in the dynamics are dominated by the dynamical phase. In the opposite limit geometric phase strongly affects transition probabilities. We show that this interplay can lead to a non-equilibrium phase transition between these two regimes. We also analyze the effect of geometric phase on defect generation during crossing a quantum critical point.Comment: 4 pages, 3 figures. Added an appendix with supplementary informatio

    Epileptic monocular nystagmus and ictal diplopia as cortical and subcortical dysfunction

    Get PDF
    AbstractWe present the case of a patient with ictal monocular nystagmus and ictal diplopia who became seizure-free after resection of a right frontal focal cortical dysplasia (FCD), type 2B. Interictal neuroophthalmological examination showed several beats of a monocular nystagmus and a spasm of the contralateral eye. An exclusively ictal monocular epileptic nystagmus could be an argument for an exclusively cortical involvement in monocular eye movement control. The interictal findings in our patient, however, argue for an irregular ictal activation of both the cortical frontal eye field and the brainstem
    corecore