88 research outputs found

    Planar Nef polyhedra and generic higher-dimensional geometry

    Get PDF
    We present two generic software projects that are part of the software library CGAL. The first part described the design of a geometry kernel for higher-dimensional Euclidian geometry and the interaction with application programs. We describe software structures, interface concepts, and their models that are based on cooordinate representation, number types, and memory layout. In the higher-dimensional software kernel the interaction between linear algebra and geometric objects and primitves is one important facet. In the actual design our users can replace number types, representation types, and the traits classes that inflate kernel functionality into our current application programs: higher-dimensional convex hulls and Delaunay tedrahedralisations. In the second part we present the realization of planar Nef polyhedra. The concept of Nef polyhedra subsumes all kinds of rectilinear polyhedral subdivisions and is therefore of general applicability within a geometric software library. The software is based on the theory of extended points and segments that allows us to reuse classical algorithmic solutions like plane sweep to realize binary operations of Nef polyhedra.Wir präsentieren zwei Softwareprojekte, die Teil der Softwarebibliothek CGAL sind. Der erste Teil beschreibt den Entwurf eines Geometriekerns für höherdimensionale euklidische Geometrie und dessen Interaktion mit Anwendungsprogrammen. Wir beschreiben die Softwarestruktur, die auf der Herausarbeitung von Schnittstellenkonzepten und ihren Modellen hinsichtlich Koordinatenrepräsentation, Zahlentypen und Speicherablage beruht. Dabei spielt im Höherdimensionalen die Interaktion zwischen linearer Algebra und den entsprechenden geometrischen Objekten und primitiven Operationen eine wesentliche Rolle. Unser Entwurf erlaubt das Auswechseln von Zahlentypen, Repräsentations- und Traitsklassen bei der Berechnung von d-dimensionalen konvexen Hüllen und Delaunay-Simplexzerlegungen. Im zweiten Teil stellen wir die Realisierung von planaren Nef-Polyedern vor. Das Konzept der Nef-Polyeder umfasst alle linear-polyedrisch begrenzten Unterteilungen. Wir beschreiben ein Softwaremodul das umfassende Funktionalität zur Verfügung stellt. Als theoretische Grundlage des Entwurfs dient die Theorie erweiterter Punkte und Segmente, die es uns erlaubt, vorhandene Algorithmen wie z.B. Plane-Sweep zur Realisierung binärer Operationen von Nef-Polyedern zu nutzen

    Low temperature/short duration steaming as a sustainable method of soil disinfection

    Get PDF
    This report was presented at the UK Organic Research 2002 Conference. Soil samples containing resting structures of fungal crop pathogens (Verticillium dahliae, Sclerotinia sclerotiorum, Sclerotium cepivorum, Pythium ultimum), potato cyst nematodes (Globodera rostochiensis and Globodera pallida) and weeds (Chenopodium album and Agropyron repens) were treated with aerated steam in the laboratory at temperatures ranging from 50–80oC in a specially constructed apparatus. Steaming at 50 or 60oC for three minutes, followed by an eight-minute resting period in the steamed soil and immediate removal from the soil thereafter, resulted in 100% kill of all weeds, fungi and nematodes. Low temperature/ short duration soil steaming could become a sustainable alternative to chemical or high-temperature steam soil disinfestation

    Bis(triphenyl­phospho­ranyl­idene)ammonium iodide

    Get PDF
    The title compound, C36H30NP2 +·I−, was obtained accidently from crystallization of a reaction mixture containing [(Ph3P)2N]OH and B(OH)3, which was contaminated with MeI. There are two independent [(Ph3P)2N]+ cations and two I− anions within the asymmetric unit. The central PNP angles are non-linear [137.6 (2) and 134.4 (2)°] and the phenyl substituents on P centres adopt different conformations within these two cations

    Calibration-free gait assessment by foot-worn inertial sensors

    Get PDF
    Walking is a central activity of daily life, and there is an increasing demand for objective measurement-based gait assessment. In contrast to stationary systems, wearable inertial measurement units (IMUs) have the potential to enable non-restrictive and accurate gait assessment in daily life. We propose a set of algorithms that uses the measurements of two foot-worn IMUs to determine major spatiotemporal gait parameters that are essential for clinical gait assessment: durations of five gait phases for each side as well as stride length, walking speed, and cadence. Compared to many existing methods, the proposed algorithms neither require magnetometers nor a precise mounting of the sensor or dedicated calibration movements. They are therefore suitable for unsupervised use by non-experts in indoor as well as outdoor environments. While previously proposed methods are rarely validated in pathological gait, we evaluate the accuracy of the proposed algorithms on a very broad dataset consisting of 215 trials and three different subject groups walking on a treadmill: healthy subjects (n = 39), walking at three different speeds, as well as orthopedic (n = 62) and neurological (n = 36) patients, walking at a self-selected speed. The results show a very strong correlation of all gait parameters (Pearson's r between 0.83 and 0.99, p < 0.01) between the IMU system and the reference system. The mean absolute difference (MAD) is 1.4 % for the gait phase durations, 1.7 cm for the stride length, 0.04 km/h for the walking speed, and 0.7 steps/min for the cadence. We show that the proposed methods achieve high accuracy not only for a large range of walking speeds but also in pathological gait as it occurs in orthopedic and neurological diseases. In contrast to all previous research, we present calibration-free methods for the estimation of gait phases and spatiotemporal parameters and validate them in a large number of patients with different pathologies. The proposed methods lay the foundation for ubiquitous unsupervised gait assessment in daily-life environments.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    Shock Wave Expansion, Decoupling and Acoustic Signals in LIBS Measurements under Martian Atmospheric Conditions

    Get PDF
    In laboratory studies, we investigated the generation of laser-induced shock waves and the accompanying acoustic signal in a simulated martian atmosphere

    SHOCK WAVE EXPANSION, DECOUPLING AND ACOUSTIC SIGNALS IN LIBS MEASUREMENTS UNDER MARTIAN ATMOSPHERIC CONDITIONS

    Get PDF
    In laboratory studies, we investigated the generation of laser-induced shock waves and the accompanying acoustic signal in a simulated martian atmosphere

    Melting, bubble-like expansion and explosion of superheated plasmonic nanoparticles

    Full text link
    We report on time-resolved coherent diffraction imaging of gas-phase silver nanoparticles, strongly heated via their plasmon resonance. The x-ray diffraction images reveal a broad range of phenomena for different excitation strengths, from simple melting over strong cavitation to explosive disintegration. Molecular dynamics simulations fully reproduce this behavior and show that the heating induces rather similar trajectories through the phase diagram in all cases, with the very different outcomes being due only to whether and where the stability limit of the metastable superheated liquid is crossed.Comment: 17 pages, 8 figures (including supplemental material
    • …
    corecore