787 research outputs found

    Toward a DNA Taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae) Using a Mixed Yule-Coalescent Analysis of Mitochondrial and Nuclear DNA

    Get PDF
    Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera) inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC) model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1) marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality) or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe

    Extended X-ray emission in the IC 2497 - Hanny's Voorwerp system: energy injection in the gas around a fading AGN

    Full text link
    We present deep Chandra X-ray observations of the core of IC 2497, the galaxy associated with Hanny's Voorwerp and hosting a fading AGN. We find extended soft X-ray emission from hot gas around the low intrinsic luminosity (unobscured) AGN (Lbol10421044L_{\rm bol} \sim 10^{42}-10^{44} erg s1^{-1}). The temperature structure in the hot gas suggests the presence of a bubble or cavity around the fading AGN (\mbox{E_{\rm bub}} \sim 10^{54} - 10^{55} erg). A possible scenario is that this bubble is inflated by the fading AGN, which after changing accretion state is now in a kinetic mode. Other possibilities are that the bubble has been inflated by the past luminous quasar (Lbol1046L_{\rm bol} \sim 10^{46} erg s1^{-1}), or that the temperature gradient is an indication of a shock front from a superwind driven by the AGN. We discuss the possible scenarios and the implications for the AGN-host galaxy interaction, as well as an analogy between AGN and X-ray binaries lifecycles. We conclude that the AGN could inject mechanical energy into the host galaxy at the end of its lifecycle, and thus provide a source for mechanical feedback, in a similar way as observed for X-ray binaries.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater

    Get PDF
    The extant global Ephemeroptera fauna is represented by over 3,000 described species in 42 families and more than 400 genera. The highest generic diversity occurs in the Neotropics, with a correspondingly high species diversity, while the Palaearctic has the lowest generic diversity, but a high species diversity. Such distribution patterns may relate to how long evolutionary processes have been carrying on in isolation in a bioregion. Over an extended period, there may be extinction of species, but evolution of more genera. Dramatic extinction events such as the K-T mass extinction have affected current mayfly diversity and distribution. Climatic history plays an important role in the rate of speciation in an area, with regions which have been climatically stable over long periods having fewer species per genus, when compared to regions subjected to climatic stresses, such as glaciation. A total of 13 families are endemic to specific bioregions, with eight among them being monospecific. Most of these have restricted distributions which may be the result of them being the relict of a previously more diverse, but presently almost completely extinct family, or may be the consequence of vicariance events, resulting from evolution due to long-term isolation

    Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater

    Get PDF
    The extant global Ephemeroptera fauna is represented by over 3,000 described species in 42 families and more than 400 genera. The highest generic diversity occurs in the Neotropics, with a correspondingly high species diversity, while the Palaearctic has the lowest generic diversity, but a high species diversity. Such distribution patterns may relate to how long evolutionary processes have been carrying on in isolation in a bioregion. Over an extended period, there may be extinction of species, but evolution of more genera. Dramatic extinction events such as the K-T mass extinction have affected current mayfly diversity and distribution. Climatic history plays an important role in the rate of speciation in an area, with regions which have been climatically stable over long periods having fewer species per genus, when compared to regions subjected to climatic stresses, such as glaciation. A total of 13 families are endemic to specific bioregions, with eight among them being monospecific. Most of these have restricted distributions which may be the result of them being the relict of a previously more diverse, but presently almost completely extinct family, or may be the consequence of vicariance events, resulting from evolution due to long-term isolation

    DISCOVERY OF A NEW MAYFLY SPECIES (EPHEMEROPTERA, BAETIDAE)NEAR CENDERAWASIH UNIVERSITY CAMPUS IN PAPUA, INDONESIA

    Get PDF
    Material collected just behind the Cenderawasih University campus in Jayapura, Papua Province, Indonesia, revealed a new species of the Labiobaetis claudiae group, which is here described and illustrated based on larvae, subimago, male and female imagos. The total number of Labiobaetis species on the island New Guinea increased to 33, the total number for Indonesia increased to 26, and the total number of Labiobaetis species worldwide is augmented to 147. A key to the larvae of the L. claudiae group is provided. The interspecific K2P distances between species of the L. claudiae group are between 20% and 23%.

    BAT AGN Spectroscopic Survey I: Spectral Measurements, Derived Quantities, and AGN Demographics

    Get PDF
    We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey (BASS). We analyze optical spectra of the majority of AGN (77%, 641/836) detected based on their 14-195 keV emission in the 70-month Swift BAT all-sky catalog. This includes redshift determination, absorption and emission line measurements, and black hole mass and accretion rate estimates for the majority of obscured and un-obscured AGN (74%, 473/641) with 340 measured for the first time. With ~90% of sources at z<0.2, the survey represents a significant census of hard-X-ray selected AGN in the local universe. In this first catalog paper, we describe the spectroscopic observations and datasets, and our initial spectral analysis. The FWHM of the emission lines show broad agreement with the X-ray obscuration (~94%), such that Sy 1-1.8 have NH10^21.9 cm^-2. Seyfert 1.9 show a range of column densities. Compared to narrow line AGN in the SDSS, the X-ray selected AGN have a larger fraction of dusty host galaxies suggesting these types of AGN are missed in optical surveys. Using the most sensitive [OIII]/Hbeta and [NII]/Halpha emission line diagnostic, about half of the sources are classified as Seyferts, ~15% reside in dusty galaxies that lack an Hbeta detection, but for which the line upper limits imply either a Seyfert or LINER, ~15% are in galaxies with weak or no emission lines despite high quality spectra, and a few percent each are LINERS, composite galaxies, HII regions, or in known beamed AGN.Comment: Accepted ApJ, see www.bass-survey.com for dat

    Biogeography and ecological diversification of a mayfly clade in New Guinea

    Get PDF
    Understanding processes that have driven the extraordinary high level of biodiversity in the tropics is a long-standing question in biology. Here we try to assess whether the large lineage richness found in a New Guinean clade of mayflies (Ephemeroptera), namely the Thraulus group (Leptophlebiidae) could be associated with the recent orogenic processes, by applying a combination of phylogenetic, biogeographic and ecological shift analyses. New Guinean representatives of the Thraulus group appear monophyletic, with the possible exception of a weakly-supported early-diverging clade from the Sunda Islands. Dating analyses suggest an Eocene origin of the Thraulus group, predating by several million years current knowledge on the origin of other New Guinean aquatic organisms. Biogeographic inferences indicate that 27 of the 28 inferred dispersals (96.4%) occurred during the Eocene, Oligocene and Miocene, while only one dispersal (3.6%) took place during the Pliocene-Pleistocene. This result contrasts with the higher number of altitudinal shifts (15 of 22; 68.2%) inferred during the Pliocene-Pleistocene time slice. Our study illustrates the role played by – potentially ecological - diversification along the elevation gradient in a time period concomitant with the establishment of high-altitude ecological niches, i.e., during orogenesis of the central New Guinean mountain range. This process might have taken over the previous main mode of diversification at work, characterized by dispersal and vicariance, by driving lineage divergence of New Guinean Leptophlebiidae across a wide array of habitats along the elevation gradient. Additional studies on organisms spanning the same elevation range as Thraulus mayflies in the tropics are needed to evaluate the potential role of the ecological opportunity or taxon cycles hypotheses in partly explaining the latitudinal diversity gradient

    A model for AGN variability on multiple timescales

    Full text link
    We present a framework to link and describe AGN variability on a wide range of timescales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different timescales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEddL/L_{\rm Edd}) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEddL/L_{\rm Edd} distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different timescales, therefore providing new insights into AGN variability and black hole growth phenomena.Comment: 5 pages, 2 figures, letter accepted for publication in MNRA
    corecore