162 research outputs found

    2D stellar population and gas kinematics of the inner kiloparsec of the post-starburst quasar SDSS J0330-0532

    Get PDF
    We have used optical Integral Field Spectroscopy in order to map the star formation history of the inner kiloparsec of the Post-Starburst Quasar (PSQ) J0330--0532 and to map its gas and stellar kinematics as well as the gas excitation. PSQs are hypothesized to represent a stage in the evolution of galaxies in which the star formation has been recently quenched due to the feedback of the nuclear activity, as suggested by the presence of the post-starburst population at the nucleus. We have found that the old stellar population (age ≥\ge 2.5 Gyr) dominates the flux at 5100 \AA\ in the inner 0.26 kpc, while both the post-starburst (100 Myr ≤\le age << 2.5 Gyr) and starburst (age << 100 Myr) components dominate the flux in a circumnuclear ring at ≈\approx0.5 kpc from the nucleus. With our spatially resolved study we do not have found any post-starburst stellar population in the inner 0.26\,kpc. On the other hand, we do see the signature of AGN feedback in this region, which does not reach the circumnuclear ring where the post-starburst population is observed. We thus do not support the quenching scenario for the J0330-0532. In addition, we have concluded that the strong signature of the post-starburst population in larger aperture spectra (e.g. from Sloan Digital Sky Survey) is partially due to the combination of the young and old age components. Based on the MBH−σstar_{\rm BH}-\sigma_{\rm star} relationship and the stellar kinematics we have estimated a mass for the supermassive black hole of 1.48 ±\pm 0.66 ×\times107^7 M⊙_\odot.Comment: 16 pages, 11 figures. arXiv admin note: text overlap with arXiv:1210.120

    2D stellar population and gas kinematics of the inner 1.5 kpc of the post-starburst quasar SDSS J0210-0903

    Get PDF
    Post-Starburst Quasars (PSQs) are hypothesized to represent a stage in the evolution of massive galaxies in which the star formation has been recently quenched due to the feedback of the nuclear activity. In this paper our goal is to test this scenario with a resolved stellar population study of the PSQ J0210-0903, as well as of its emitting gas kinematics and excitation. We have used optical Integral Field Spectroscopy obtained with the Gemini GMOS instrument at a velocity resolution of ~120 km/s and spatial resolution of ~0.5 kpc. We find that old stars dominate the luminosity (at 4700 \AA) in the inner 0.3 kpc (radius), while beyond this region (at ~0.8 kpc) the stellar population is dominated by both intermediate age and young ionizing stars. The gas emission-line ratios are typical of Seyfert nuclei in the inner 0.3 kpc, where an outflow is observed. Beyond this region the line ratios are typical of LINERs and may result from the combination of diluted radiation from the nucleus and ionization from young stars. The gas kinematics show a combination of rotation in the plane of the galaxy and outflows, observed with a maximum blueshift of -670 km/s. We have estimated a mass outflow rate in ionized gas in the range 0.3--1.1 M_sun/yr and a kinetic power for the outflow of dE/dt ~ 1.4--5.0 x 10^40 erg/s ~0.03% - 0.1% x L_bol. This outflow rate is two orders of magnitude higher than the nuclear accretion rate of ~8.7 x 10^-3 M_sun/yr, thus being the result of mass loading of the nuclear outflow by circumnuclear galactic gas. Our observations support an evolutionary scenario in which the feeding of gas to the nuclear region has triggered a circumnuclear starburst 100's Myr ago, followed by the triggering of the nuclear activity, producing the observed gas outflow which may have quenched further star formation in the inner 0.3 kpc.Comment: 17 pages, 9 Figures, 2 Table

    Spectropolarimetry of PKS 0040-005 and the Orientation of Broad Absorption Line Quasars

    Get PDF
    We have used the Very Large Telescope (VLT) to obtain spectropolarimetry of the radio-loud, double-lobed broad absorption line (BAL) quasar PKS 0040-005. We find that the optical continuum of PKS 0040-005 is intrinsically polarized at 0.7% with an electric vector position angle nearly parallel to that of the large-scale radio axis. This result is naturally explained in terms of an equatorial scattering region seen at a small inclination, building a strong case that the BAL outflow is not equatorial. In conjunction with other recent results concerning radio-loud BAL quasars, the era of simply characterizing these sources as ``edge-on'' is over.Comment: 5 Pages, including 2 PostScript figures. Accepted for publication in MNRAS letter

    Outflows and the Physical Properties of Quasars

    Full text link
    We have investigated a sample of 5088 quasars from the Sloan Digital Sky Survey Second Data Release in order to determine how the frequency and properties of broad absorptions lines (BALs) depend on black hole mass, bolometric luminosity, Eddington fraction (L/L_Edd), and spectral slope. We focus only on high-ionization BALs and find a number of significant results. While quasars accreting near the Eddington limit are more likely to show BALs than lower L/LEddL/L_{Edd} systems, BALs are present in quasars accreting at only a few percent Eddington. We find a stronger effect with bolometric luminosity, such that the most luminous quasars are more likely to show BALs. There is an additional effect, previously known, that BAL quasars are redder on average than unabsorbed quasars. The strongest effects involving the quasar physical properties and BAL properties are related to terminal outflow velocity. Maximum observed outflow velocities increase with both the bolometric luminosity and the blueness of the spectral slope, suggesting that the ultraviolet luminosity to a great extent determines the acceleration. These results support the idea of outflow acceleration via ultraviolet line scattering.Comment: Uses emulateapj.cls, 14 pages including 7 tables and 7 figures. Accepted for publication in the Astrophysical Journal, Unabridged version of Table 4 can be downloaded from http://physics.uwyo.edu/agn

    Star Formation in QSO Host Galaxies

    Full text link
    Many of the conditions that are necessary for starbursts appear to be important in the triggering of QSOs. However, it is still debatable whether starbursts are ubiquitously present in galaxies harboring QSOs. In this paper we review our current knowledge from observations of the role of starbursts in different types of QSOs. Post-starburst stellar populations are potentially present in the majority of QSO hosts. QSOs with far-infrared colors similar to those of ultraluminous infrared galaxies invariably reside in merging galaxies that have interaction-induced starbursts of a few hundred Myr or less. Similar, but dramatically more luminous post-starburst populations are found in the recently discovered class of QSOs known as post-starburst QSOs, or Q+A's. Both of these classes, however, comprise only a small fraction (10-15%) of the total QSO population. The so-called "red" QSOs generally suffer from strong extinction at optical wavelengths, making them ideal candidates for the study of hosts. Their stellar populations typically show a post-starburst component as well, though with a larger range of ages. Finally, optical "classical" QSO hosts show traces of major star formation episodes (typically involving >10% of the mass of the stellar component) in the more distant past (1-2 Gyr). These starbursts appear to be linked to past merger events. It remains to be determined whether these mergers were also responsible for triggering the QSO activity that we observe today.Comment: 8 pages, 5 figures, invited review for "QSO Host Galaxies: Evolution and Environment", held at the Lorentz Center, Universiteit Leiden, August, 200
    • …
    corecore