29 research outputs found

    A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells

    Get PDF
    KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-bl, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment

    Diel Variations in Survey Catch Rates and Survey Catchability of Spiny Dogfish and their Pelagic Prey in the Northeast US Continental Shelf Large Marine Ecosystem

    Get PDF
    This study examines the potential uncertainty in survey biomass estimates of Spiny Dogfish Squalus acanthias in the Northeast U.S. Continental Shelf Large Marine Ecosystem (NES LME). Diel catch-per-unit-effort (CPUE) estimates are examined from the Northeast Fisheries Science Center bottom trawl surveys conducted during autumn (1963-2009) and spring (1968-2009). Influential environmental variables on survey catchability are identified for Spiny Dogfish life history stages and five pelagic prey species: Butterfish Peprilus triacanthus, Atlantic Herring Clupea harengus, shortfin squid Illex spp., longfin squid Doryteuthis spp., and Atlantic Mackerel Scomber scombrus. Daytime survey catchability was significantly higher than nighttime catchability for most species during autumn and for mature male Spiny Dogfish, shortfin squid, and longfin squid during spring in the NES LME. For most stages and species examined, breakpoint analyses identified significant increases in CPUE in the morning, peak CPUE during the day, and significant declines in CPUE in the late afternoon. Seasonal probabilities of daytime catch were largely driven by solar zenith angle for most species, with stronger trends identified during autumn. Unadjusted CPUE estimates appear to overestimate absolute abundance, with adjustments resulting in reductions in absolute abundance ranging from 41% for Spiny Dogfish to 91% for shortfin and longfin squids. These findings have important implications for Spiny Dogfish regarding estimates of population consumption of key pelagic prey species and their ecological footprint within the NES LME

    A Large Gene Network in Immature Erythroid Cells Is Controlled by the Myeloid and B Cell Transcriptional Regulator PU.1

    Get PDF
    PU.1 is a hematopoietic transcription factor that is required for the development of myeloid and B cells. PU.1 is also expressed in erythroid progenitors, where it blocks erythroid differentiation by binding to and inhibiting the main erythroid promoting factor, GATA-1. However, other mechanisms by which PU.1 affects the fate of erythroid progenitors have not been thoroughly explored. Here, we used ChIP-Seq analysis for PU.1 and gene expression profiling in erythroid cells to show that PU.1 regulates an extensive network of genes that constitute major pathways for controlling growth and survival of immature erythroid cells. By analyzing fetal liver erythroid progenitors from mice with low PU.1 expression, we also show that the earliest erythroid committed cells are dramatically reduced in vivo. Furthermore, we find that PU.1 also regulates many of the same genes and pathways in other blood cells, leading us to propose that PU.1 is a multifaceted factor with overlapping, as well as distinct, functions in several hematopoietic lineages

    Erythroid Kruppel-Like factor regulates E2F4 and the G1 Cdk inhibitor, p18

    No full text
    Erythroid Kruppel-Like Factor (EKLF) is a zinc finger transcription factor which is essential for ß-globin gene expression. Knockout mice die from anemia at E15, but restoration of globin chain imbalance does not rescue anemia or increase survival. Cell lines derived from EKLF null mice undergo proliferation arrest upon reactivation of a conditional EKLF-ER fusion protein, suggesting a role in cell cycle control. A transcriptional profiling experiment comparing the global gene expression in EKLF null and wild type fetal liver identified many differentially expressed genes, a number of which function in G1 and at the G1/S checkpoint of the cell cycle. The Cyclin dependent kinase (Cdk) inhibitor, p18, and the S phase transcription factor E2F4 were both found to be significantly down regulated in EKLF null mice and this result was confirmed by real-time PCR. Interestingly, E2F4 knockout mice have a similar phenotype to EKLF knockout mice. Bioinformatic searches of the p18 and E2F4 genes shows that each contains phylogenetically conserved CACC box motifs capable of binding EKLF within longer regions of conservation in promoter and intron regions. The p18 gene contains two conserved CACCC sites upstream of the start of transcription, which are required for EKLF dependent promoter activity in luciferase reporter assays. The transcription factor E2F4 contains a conserved EKLF-binding CACC site within an intron that is closely associated with two conserved GATA1 binding sites. We show by a chromatin immunoprecipitation (ChIP) assays that the E2F4 intron and p18 promoter are occupied by EKLF in vivo. Together, these results suggest that EKLF is likely to directly regulate expression of key cell cycle genes in vivo to drive the switch from proliferation to differentiation of erythrocytes. The loss of EKLF is likely to result in aberrant proliferation and predisposition to leukemia
    corecore