80 research outputs found

    Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits

    Get PDF
    Optogenetics has revolutionized neuroscience by providing means to control cell signaling with spatiotemporal control in discrete cell types. In this review, we summarize four major classes of optical tools to manipulate neuromodulatory GPCR signaling: opsins (including engineered chimeric receptors); photoactivatable proteins; photopharmacology through caging—photoswitchable molecules; fluorescent protein based reporters and biosensors. Additionally, we highlight technologies to utilize these tools in vitro and in vivo, including Cre dependent viral vector expression and two-photon microscopy. These emerging techniques targeting specific members of the GPCR signaling pathway offer an expansive base for investigating GPCR signaling in behavior and disease states, in addition to paving a path to potential therapeutic developments

    Dorsal-CA1 hippocampal neuronal ensembles encode nicotine-reward contextual associations

    Get PDF
    Natural and drug rewards increase the motivational valence of stimuli in the environment that, through Pavlovian learning mechanisms, become conditioned stimuli that directly motivate behavior in the absence of the original unconditioned stimulus. While the hippocampus has received extensive attention for its role in learning and memory processes, less is known regarding its role in drug-reward associations. We used in vivo Ca2+ imaging in freely moving mice during the formation of nicotine preference behavior to examine the role of the dorsal-CA1 region of the hippocampus in encoding contextual reward-seeking behavior. We show the development of specific neuronal ensembles whose activity encodes nicotine-reward contextual memories and that are necessary for the expression of place preference. Our findings increase our understanding of CA1 hippocampal function in general and as it relates to reward processing by identifying a critical role for CA1 neuronal ensembles in nicotine place preference

    Prepronociceptin-expressing neurons in the extended amygdala encode and promote rapid arousal responses to motivationally salient stimuli

    Get PDF
    Motivational states consist of cognitive, emotional, and physiological components controlled by multiple brain regions. An integral component of this neural circuitry is the bed nucleus of the stria terminalis (BNST). Here, we identify that neurons within BNST that express the gene prepronociceptin (Pno

    Stress-induced reinstatement of nicotine preference requires dynorphin/kappa opioid activity in the basolateral amygdala

    Get PDF
    UNLABELLED: The dynorphin (DYN)/kappa-opioid receptor (KOR) system plays a conserved role in stress-induced reinstatement of drug seeking for prototypical substances of abuse. Due to nicotine\u27s high propensity for stress-induced relapse, we hypothesized that stress would induce reinstatement of nicotine seeking-like behavior in a KOR-dependent manner. Using a conditioned place preference (CPP) reinstatement procedure in mice, we show that both foot-shock stress and the pharmacological stressor yohimbine (2 mg/kg, i.p.) induce reinstatement of nicotine CPP in a norbinaltorphimine (norBNI, a KOR antagonist)-sensitive manner, indicating that KOR activity is necessary for stress-induced nicotine CPP reinstatement. After reinstatement testing, we visualized robust c-fos expression in the basolateral amygdala (BLA), which was reduced in mice pretreated with norBNI. We then used several distinct but complementary approaches of locally disrupting BLA KOR activity to assess the role of KORs and KOR-coupled intracellular signaling cascades on reinstatement of nicotine CPP. norBNI injected locally into the BLA prevented yohimbine-induced nicotine CPP reinstatement without affecting CPP acquisition. Similarly, selective deletion of BLA KORs in KOR conditional knock-out mice prevented foot-shock-induced CPP reinstatement. Together, these findings strongly implicate BLA KORs in stress-induced nicotine seeking-like behavior. In addition, we found that chemogenetic activation of Gαi signaling within CaMKIIα BLA neurons was sufficient to induce nicotine CPP reinstatement, identifying an anatomically specific intracellular mechanism by which stress leads to reinstatement. Considered together, our findings suggest that activation of the DYN/KOR system and Gαi signaling within the BLA is both necessary and sufficient to produce reinstatement of nicotine preference. SIGNIFICANCE STATEMENT: Considering the major impact of nicotine use on human health, understanding the mechanisms by which stress triggers reinstatement of drug-seeking behaviors is particularly pertinent to nicotine. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in stress-induced reinstatement of drug seeking for other commonly abused drugs. However, the specific role, brain region, and mechanisms that this system plays in reinstatement of nicotine seeking has not been characterized. Here, we report region-specific engagement of the DYN/KOR system and subsequent activation of inhibitory (Gi-linked) intracellular signaling pathways within the basolateral amygdala during stress-induced reinstatement of nicotine preference. We show that the DYN/KOR system is necessary to produce this behavioral state. This work may provide novel insight for the development of therapeutic approaches to prevent stress-related nicotine relapse

    Exposure to chronic mild stress prevents kappa opioid-mediated reinstatement of cocaine and nicotine place preference

    Get PDF
    Stress increases the risk of drug abuse, causes relapse to drug seeking, and potentiates the rewarding properties of both nicotine and cocaine. Understanding the mechanisms by which stress regulates the rewarding properties of drugs of abuse provides valuable insight into potential treatments for drug abuse. Prior reports have demonstrated that stress causes dynorphin release, activating kappa opioid receptors (KOR) in monoamine circuits resulting in both potentiation and reinstatement of cocaine and nicotine conditioned place preference. Here we report that kappa opioid-dependent reinstatement of cocaine and nicotine place preference is reduced when the mice are exposed to a randomized chronic mild stress (CMS) regime prior to training in a conditioned place preference-reinstatement paradigm. The CMS schedule involves seven different stressors (removal of nesting for 24 h, 5 min forced swim stress at 15°C, 8 h food and water deprivation, damp bedding overnight, white noise, cage tilt, and disrupted home cage lighting) rotated over a 3-week period. This response is KOR-selective, as CMS does not protect against cocaine or nicotine drug-primed reinstatement. This protection from reinstatement is also observed following sub-chronic social defeat stress, where each mouse is placed in an aggressor mouse home cage for a period of 20 min over 5 days. In contrast, a single acute stressor resulted in a potentiation of KOR-induced reinstatement, as previously reported. Prior studies have shown that stress alters sensitivity to opioids and prior stress can influence the pharmacodynamics of the opioid receptor system. Together, these findings suggest that exposure to different forms of stress may cause a dysregulation of kappa opioid circuitry and that changes resulting from mild stress can have protective and adaptive effects against drug relapse

    Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

    Get PDF
    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms

    A GABAergic projection from the centromedial nuclei of the amygdala to ventromedial prefrontal cortex modulates reward behavior

    Get PDF
    The neural circuitry underlying mammalian reward behaviors involves several distinct nuclei throughout the brain. It is widely accepted that the midbrain dopamine (DA) neurons are critical for the reward-related behaviors. Recent studies have shown that the centromedial nucleus of the amygdala (CeMA) has a distinct role in regulating reward-related behaviors. However, the CeMA and ventromedial PFC (vmPFC) interaction in reward regulation remains poorly understood. Here, we identify and dissect a GABAergic projection that originates in the CeMA and terminates in the vmPFC (VGat-Cre(CeMA-vmPFC)) using viral-vector-mediated, cell-type-specific optogenetic techniques in mice. Pathway-specific optogenetic activation of the VGat-Cre(CeMA-vmPFC) circuit in awake, behaving animals produced a positive, reward-like phenotype in real-time place preference and increased locomotor activity in open-field testing. In sucrose operant conditioning, the photoactivation of these terminals increased nose-poking effort with no effect on licking behavior and robustly facilitated the extinction of operant behavior. However, photoactivation of these terminals did not induce self-stimulation in the absence of an external reward. The results described here suggest that the VGat-Cre(CeMA-vmPFC) projection acts to modulate existing reward-related behaviors. SIGNIFICANCE STATEMENT Many studies have shown that the interactions between the centromedial nucleus of the amygdala (CeMA) and ventromedial PFC (vmPFC) have critical roles for emotional regulation. However, most studies have associated this circuit with fear and anxiety behaviors and emphasized top-down processing from vmPFC to CeMA. Here, we provide new evidence for bottom-up CeMA to vmPFC influence on reward-related behaviors. Although previous work implicated the CeMA in incentive salience, our results isolate the investigation to a specific CeMA GABAergic projection to the vmPFC. This long-range GABAergic interaction between amygdala and frontal cortex adds a new dimension to the complex regulation of reward-related behaviors

    Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses

    Get PDF
    Maintaining stable body temperature through environmental thermal stressors requires detection of temperature changes, relay of information, and coordination of physiological and behavioral responses. Studies have implicated areas in the preoptic area of the hypothalamus (POA) and the parabrachial nucleus (PBN) as nodes in the thermosensory neural circuitry and indicate that the opioid system within the POA is vital in regulating body temperature. In the present study we identify neurons projecting to the POA from PBN expressing the opioid peptides dynorphin and enkephalin. Using mouse models, we determine that warm-activated PBN neuronal populations overlap with both prodynorphin (Pdyn) and proenkephalin (Penk) expressing PBN populations. Here we report that in the PB
    • …
    corecore