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SUMMARY

Motivational states consist of cognitive, emotional, and physiological components controlled by multiple
brain regions. An integral component of this neural circuitry is the bed nucleus of the stria terminalis
(BNST). Here, we identify that neurons within BNST that express the gene prepronociceptin (PnocBNST)
modulate rapid changes in physiological arousal that occur upon exposure to motivationally salient stimuli.
Using in vivo two-photon calcium imaging, we find that PnocBNST neuronal responses directly correspond
with rapid increases in pupillary size when mice are exposed to aversive and rewarding odors. Furthermore,
optogenetic activation of these neurons increases pupillary size and anxiety-like behaviors but does not
induce approach, avoidance, or locomotion. These findings suggest that excitatory responses in PnocBNST

neurons encode rapid arousal responses that modulate anxiety states. Further histological, electrophysio-
logical, and single-cell RNA sequencing data reveal that PnocBNST neurons are composed of genetically
and anatomically identifiable subpopulations that may differentially tune rapid arousal responses to motiva-
tional stimuli.

INTRODUCTION

Dysfunctional arousal responses are a core component of

many neuropsychiatric disorders. For example, patients with

anxiety disorders often show hyperarousal responses to nega-

tively salient stimuli, and patients suffering from depression

show hypoarousal responses to positively salient stimuli

(Craske et al., 2009; Lang and McTeague, 2009; Patriquin

et al., 2019; Schmidt et al., 2017; Urbano et al., 2017; Wilhelm

and Roth, 2001). Elucidating the neural circuit elements that

orchestrate changes in physiological arousal is, thus, essential

for understanding maladaptive motivational states (Marton and

Sohal, 2016; Sparta et al., 2013; Touriño et al., 2013). Rodent

models have enabled intricate dissection of the neural circuits

for both negative and positive motivational states by presenting

stimuli that elicit aversion or reward (Calhoon and Tye, 2015;

Stuber and Wise, 2016; Tovote et al., 2015). However, these

studies often overlook the rapid increases in physiological

arousal that characterize changing motivational states. In hu-

mans, rapid (within seconds) increases in physiological arousal,

as measured by pupil size changes, follow exposure to nega-

tively salient stimuli, such as threat-inducing images (Cascardi

et al., 2015; Price et al., 2013). The same is true when humans

are presented with positively salient stimuli, such as rewarding

images of money or videos of caregivers (Schneider et al.,

2018; Tummeltshammer et al., 2019). Thus, in addition to

long-term adaptations in arousal (e.g., sleep/wake states; de

Lecea et al., 2012), an important component of motivation is

the rapid changes in physiological arousal upon presentation

of salient stimuli.
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One particular brain region that may encode rapid changes in

arousal is the bed nucleus of the stria terminalis (BNST, a part of

the extended amygdala). Evidence from anatomical (Dabrowska

et al., 2011; Dong et al., 2001; Singewald et al., 2003), behavioral

(Duvarci et al., 2009; Jennings et al., 2013a; Kim et al., 2013;

Walker et al., 2009), and neuroimaging (Straube et al., 2007;

Yassa et al., 2012) studies has implicated BNST as a key compo-

nent of the neural circuitry that regulates motivated behavior. For

instance, recent neurocircuit studies inmice have highlighted the

role of BNST in reward and aversion (Giardino et al., 2018; Jen-

nings et al., 2013a, 2013b; Kim et al., 2013), fear and anxiety-like

behaviors (Crowley et al., 2016; Duvarci et al., 2009; Kim et al.,

2013; Marcinkiewcz et al., 2016; Walker et al., 2009), and social

preference and aversion (Goodson and Wang, 2006; Lei et al.,

2010; Newman, 1999). Further, previous studies have identified

how subsets of BNST neurons expressing certain marker genes

such as corticotrophin-releasing hormone (CrhBNST), protein ki-

nase C d (Pkcd BNST), and somatostatin (SomBNST) drive moti-

vated behaviors (Kash et al., 2015; Koob and Heinrichs, 1999;

Lebow and Chen, 2016; Tovote et al., 2015). However, whether

specific neural populations within BNST drive rapid changes in

physiological arousal remains unknown. This is, in part, due to

the low number of studies linking the functional heterogeneity

within BNST with its role in rapid changes in physiological

arousal (Kim et al., 2013).

Neuropeptide gene expression patterns have identified func-

tionally distinct subpopulations of neurons in BNST (Kash

et al., 2015). Recently, neurons that express the prepronocicep-

tin gene (Pnoc, the genetic precursor to the neuropeptide

nociceptin) within the central nucleus of the amygdala, the

paranigral ventral tegmental area, and the arcuate nucleus of

the hypothalamus were shown to have a role in gating motiva-

tional states and reward seeking (Hardaway et al., 2019; Jais

et al., 2020; Parker et al., 2019). Interestingly, Pnoc expression

within BNST is among the highest within the central nervous

system (Boom et al., 1999; Ikeda et al., 1998), so we set out to

investigate the role of these neurons in defining motivational

states, specifically in driving the physiological arousal responses

that occurs in response to motivationally salient stimuli.

In the present study, we used cell-type-specific optogenetic

and head-fixed two-photon calcium-imaging approaches (Mc-

Henry et al., 2017; Namboodiri et al., 2019; Otis et al., 2017) to

assess the role of PnocBNST neurons in driving and encoding

rapid physiological arousal responses to aversive and rewarding

odors. We found a variety of responses among PnocBNST neu-

rons; particularly, the magnitude of correlation between neural

dynamics of these neurons and pupillary responses increased

with exposure to aversive and rewarding odors. We also found

that excitatory responses that correlated with pupillary re-

sponses were common across both odor presentations, sug-

gesting that motivational salience might be responsible for this

response pattern. Optogenetic activation of PnocBNST neurons

increased physiological measurements associated with arousal

(pupillary response and heart rate) and further modulated anxi-

ety-like behavior but did not induce approach, avoidance, or

locomotion. Single-cell RNA sequencing revealed that PnocBNST

neurons are transcriptionally diverse and can be subdivided by

multiple distinct gene markers. Collectively, these results sug-

gest that PnocBNST neurons play an important role in orches-

trating arousal-related responses associated with motivationally

salient stimuli.

RESULTS

Expression of Pnoc Defines a Subpopulation of
GABAergic Neurons within adBNST that Can Be
Monitored Using Calcium-Imaging Approaches
BNST is composed of various subnuclei that have unique mo-

lecular and functional identities (Giardino et al., 2018; Gungor

and Paré, 2016). Therefore, we first assessed the distribution

of Pnoc-expressing neurons across the BNST. Using fluores-

cent in situ hybridization (FISH), we observed high expression

of Pnoc distributed throughout the BNST (Figure 1A) but partic-

ularly in the anterodorsal BNST (adBNST), as previously

described (Neal et al., 1999). Further, we found that PnocBNST

neurons predominantly express the vesicular GABA transporter

gene, Slc32a1 (Vgat), and not the vesicular glutamate trans-

porter 2 gene, Slc17a6 (Vglut2; Figure 1B), indicating that

Pnoc expression defines a subpopulation of GABAergic neu-

rons within BNST. Pnoc-IRES-Cre mice (Hardaway et al.,

2019; Parker et al., 2019) were then used for selective targeting

of Pnoc+ neurons in adBNST in conjunction with Cre-inducible

viruses.

To characterize how PnocBNST firing is related to calcium-

mediated fluorescent dynamics, we transduced the adBNST of

Pnoc-IRES-Cre mice with Cre-dependent GCaMP6s virus (Fig-

ure 1C).We then performed calcium imaging in brain slices under

an epifluorescent microscope and simultaneously activated

PnocBNST neurons via current injections at various frequencies.

We found a linear relationship between evoked action potentials

and their respective fluorescent peaks (Figures 1E–1G), demon-

strating that calcium dynamics track evoked firing in brain slices.

PnocBNST Neurons Encode Rapid Changes in Arousal to
Aversive and Rewarding Stimuli
Since the BNST is thought to coordinate motivational states

essential for guiding actions of reward seeking and aversion

(Calhoon and Tye, 2015; Kash et al., 2015; Lebow and Chen,

2016; Stamatakis et al., 2014; Tovote et al., 2015), we tested

whether the activity of PnocBNST neurons is altered by exposure

to stimuli with opposing motivational salience. We exposedmice

to either trimethylthiazoline (TMT, as an aversive odorant) or pea-

nut oil (as an appetitive odorant) as odors that induce either place

aversion or place preference (Root et al., 2014), respectively.

First, we demonstrated that freely moving mice reliably avoided

a location with TMT and preferred a location containing peanut

oil (Figures 2A–2C), consistent with the aversive and appetitive

nature of these olfactory stimuli. We also observed increases in

pupillary size when freely movingmice were in proximity to either

TMT- or peanut-oil-containing odor swabs, as compared to a

swab with water (Figures 2D–2F). Pupillary responses have

been shown to reflect rapid changes in physiological arousal

(Cascardi et al., 2015; Price et al., 2013).

To evaluate encoding of PnocBNST neurons to these odors, we

developed a head-fixed behavioral preparation compatible with

two-photon microscopy to control proximity of an odor swab
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and allow us to measure pupil dilation and ambulation

(Figures 2J and 2K). Odors were presented with a cotton swab

that could be positioned near or far from the mouse, while pupil

size was recorded through a camera aimed at one of the eyes

(Reimer et al., 2014). Having animals head-fixed also allowed

us to record calcium activity from individual PnocBNST neurons

in awake mice via a GRIN lens under a two-photon microscope

(Figures 2G and 2H). With algorithms that use constrained non-

negative matrix factorization (CNMF) (Pnevmatikakis et al.,

2016; Zhou et al., 2018), we extracted activity dynamics from in-

dividual PnocBNST neurons (Figure 2I; Figures S1A–S1E). We

found that �50% of PnocBNST neurons showed a significant

change in response (either excitation or inhibition) to a swab

with TMT or peanut oil as compared to a control (water) swab

(Figures 3A–3G). Strikingly, neurons that showed significant

excitation or inhibition to TMT or peanut oil swabs showed signif-

icant increases in correlation between pupillary fluctuations and

their individual neural dynamics (Figures 3H–3J). We also found

different proportions of neurons that were excited and inhibited

between TMT and peanut oil exposure (Figure 3G), suggesting

that subtypes of PnocBNST neuronsmay exist to encode aversive

versus rewarding arousal states. Inhibitory responses appear to

be specific to aversive arousal states, while excitatory responses

were observed in both aversive and rewarding arousal states

(Figure 3G). We next analyzed neurons from a subset of mice

that were first exposed to the peanut swab and subsequently

to the TMT swab (n = 162 neurons from 2 mice). We found that

half of the neurons that were excited to the peanut swab were

also excited to the TMT swab. Similarly, half of the neurons

that showed no change to the peanut swab were significantly

excited to the TMT swab, thus further suggesting that a sub-

group of PnocBNST neurons encodes arousal independent of

A

B

D

E

C

G

F

Figure 1. Expression of PnocDefines a Subpopulation of GABAergic Neuronswithin adBNST that Can BeMonitored Using Calcium-Imaging

Approaches

(A) Confocal images depicting the distribution of Pnoc-expressing neurons in BNST using FISH with DAPI counterstain. LV, lateral ventricle; LS, lateral septum;

adBNST, anterodorsal BNST; avBNST, anteroventral BNST; pdBNST, posterodorsal BNST; pvBNST, posteroventral BNST; ac, anterior commissure; ic, internal

capsule. Scale bars, 40 mm.

(B) Confocal image depicting the overlap between the expression ofPnoc, Vgat, and Vglut2within BNST neurons using FISH (left). Scale bar, 40 mm. Proportion of

Vgat+ and Vglut2+ neurons quantified using FISH (right).

(C) Schematic of injection of AAVdj-EF1a-DIO-GCaMP6s into the adBNST of Pnoc-IRES-Cre mice.

(D) Schematic of simultaneous patch-clamp electrophysiology and calcium imaging of GCaMP6s-expressing Pnoc+ neurons.

(E) Sample traces showing a series of depolarizing pulses (1–20 Hz) applied in current-clamp mode to drive trains of action potentials (bottom), during which

GCaMP6s fluorescence was tracked in recorded neurons (top).

(F) Overlay of sample traces showing elevation of GCaMP6s fluorescence signal during the depolarizing pulses, so that a single action potential was detectable

(red waveform).

(G) Top: representative images of an individual PnocBNST neuron showing evoked fluorescence peaks at the various depolarizing pulses. Bottom: action potential

generation resulted in linear elevations in GCaMP6s fluorescence (n = 10 neurons). Data are shown as mean ± SEM. ***p < .001.

For a description of statistical analysis and results shown in this figure, please refer to Table S1.
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the valence of the stimuli, whereas other groups encode negative

arousal specifically. Taken together, we found heterogeneity in

response dynamics from individual PnocBNST neurons that

correlate with pupillary responses. In summary, inhibitory re-

sponses are specific to aversive odors, whereas excitatory re-

sponses are shared across both aversive and rewarding odors,

which include subgroups of PnocBNST neurons that encode

arousal independent of valence.

PnocBNST activity may also relate to locomotor activity. Consis-

tent with the valence of each odorant, the TMT swab produced an

initial decrease in movement velocity when the odor was near,

whereas the peanut oil swab produced amoderate increase in ve-

locity (Figures S2A and S2B). Similar to pupil diameter, velocity

and neural activity of PnocBNST neurons showed significant corre-

lations in neurons that showed a significant change in response

(either excitation or inhibition) to mice exposed to the peanut

swab (Figures S2C–S2E). The increase in correlation was very

modest to TMT exposure and occurred only in neurons excited

by the TMT swab as compared to the control swab. In summary,

we found that a large proportion of PnocBNST neurons are corre-

lated withmeasurements of arousal states, and the observed het-

erogeneity in response dynamics that can be observed across

neurons (Figure S2G) suggests that these neurons are composed

of functionally distinct subtypes.

PnocBNST Neurons Drive Arousal Responses and
Anxiety-like Behavior
Since we observed that excitatory responses were predominant

to both motivationally salient stimuli, we next tested whether op-

togenetic photoactivation of PnocBNST neurons (Figures 4A–4C)

can induce locomotion and motivational states. We first evalu-

ated whether viral tools can reliably activate PnocBNST neuronal

activity. Whole-cell patch-clamp slice electrophysiological re-

cordings in adBNST within ChR2-expressing PnocBNST neurons

(Figure 4B) showed that we could reliably photoactivate

PnocBNST neurons at 20 Hz with 100% spike fidelity (Figures 4C

and 4D). In freely moving mice, we first found that photoactiva-

tion of PnocBNST neurons did not induce changes in locomotion,

as assessed bymeasuring velocity in freelymovingmice (Figures

4E and 4F). To test whether photoactivation ofPnocBNST neurons

induced a place preference or aversion, freely moving mice were

placed in a two-chambered arena to assess time spent in

a chamber paired with photoactivation of PnocBNST neurons

(real-time place preference assay). Photoactivation of PnocBNST

J

K

E F

B C

D

A G

I

H

Figure 2. Both Aversive Odor TMT and Rewarding Odor Peanut Oil Increase Physiological Arousal Responses, as Evidenced by Increased

Pupillary Size in Both Freely Moving and Head-Fixed Mice Used for Two-Photon Calcium Imaging

(A) Schematic of a freely moving mouse in its home cage to assess avoidance and approach behaviors to a water control, TMT swabs, or peanut oil swabs.

(B) Group average of time in odor zone inmice exposed consecutively to control and TMT swabs (swabwas placed in preferred side determined during a baseline

before testing; n = 4).

(C) Group average of time in odor zone in mice exposed consecutively to control and peanut swabs (swab was placed in non-preferred side determined during a

baseline before testing; n = 4).

(D) Schematic of modified arena used for pupillometry in freely moving animals during exposure to control, TMT, or peanut oil swabs. Image of a mouse sniffing

the odor swab. Inset in image shows close-up of the mouse’s pupil.

(E) Group average of normalized pupil diameter between consecutive exposure to control and TMT odor during the first initial contact with the odor swab (n = 4).

(F) Group average of normalized pupil diameter between consecutive exposure to control and peanut odor during the first initial contact with the odor swab (n = 4).

(G) Schematic of implantation of a GRIN lens above adBNST of Pnoc-IRES-Cre mice injected with AAVdj-EF1a-DIO-GCaMP6s.

(H) Representative image of PnocBNST neurons through a GRIN lens.

(I) Extracted calcium traces from two representative PnocBNST neurons using CNMF.

(J) Schematic of a head-fixed mouse on a running disc with simultaneous pupillometry under a two-photon microscope while being exposed to a movable odor

swab. The odor swab was either 25 cm (far) or 1 cm (near) from the mice. Inset: representative frame of a mouse pupil with size-tracking square and accom-

panying sample pupil trace.

(K) Sample traces of PnocBNST neurons shown based on location of either the control or TMT swab. Data are shown as mean ± SEM. *p < .05; **p < .01.

For a description of statistical analysis and results shown in this figure, please refer to Table S1.
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neurons did not induce either place aversion or place preference

(Figures 4G and 4H), indicating that PnocBNST neurons may not

inherently drive locomotion or approach/avoidance behaviors.

We next wanted to test whether photoactivation of PnocBNST

neurons was sufficient to increase physiological arousal. To

accomplish this, we developed a stationary head-fixed prepara-

tion that allowed for the measurement of arousal responses in

combination with optogenetics by transducing Cre-dependent

channelrhodopsin into the adBNST of Pnoc-IRES-Cre mice (Fig-

ure 4I). Photoactivation of PnocBNST neurons again showed that

it did not alter movement, as measured by a piezoelectric sensor

underneath the mice (Figure 4J), but significantly increased both

pupil area (Figure 4K) and heart rate (Figure 4L). Taken together,

these data suggest that the activity of PnocBNST neurons in-

creases physiological arousal responses.

Next, we tested whether the photoactivation of PnocBNST neu-

rons was sufficient to drive anxiety-like behaviors in an elevated

plusmaze (EPM), a test traditionally used to test efficacy of anxio-

lytic drugs. To accomplish this, we photoactivated PnocBNST neu-

rons while mice explored an EPM, which consisted of two open

arms and two perpendicular closed arms.We found that photoac-

tivation of PnocBNST neurons in the EPM further decreased time in

the open arms (Figures 4M and 4N). Similarly, photoactivation of

PnocBNST neurons in an open field arena also decreased time in

thecenterof thearena (FiguresS3A–S3C).Wenext testedwhether

PnocBNST neurons were necessary to avoid the open arms of the

EPM. In agreement with our photoactivation findings, photoinhibi-

tion of PnocBNST neurons significantly increased time in the open

arms (Figures 4O and 4P). In summary, our data indicate that

PnocBNST neurons are capable of driving arousal responses inde-

pendent of behavior and can modulate anxiety-like states.

PnocBNST Neurons Exhibit Diversity in Both Anatomical
Connectivity and Genetic Identity
Since we found heterogeneity in response dynamics with ani-

mals exposed to both arousal-inducing aversive and rewarding

Peanut

2%

45%53%

32%22%

45%

TMT

I

H

KExcited
Inhibited
No change

G

J

2 
sd

39
7 

ne
ur

on
s

-4

4

-5

5

 C
a2+

 a
ct

iv
ity

 (s
d)

Pu
pi

l s
iz

e 
(s

d)

C

Control swab TMT swabA
NearFar Far NearFar Far

B

2 
sd

78
0 

ne
ur

on
s

-4

4

-5

5

 C
a2+

 a
ct

iv
ity

 (s
d)

F

Control swab Peanut swabD
NearFar Far NearFar Far

E

Pu
pi

l s
iz

e 
(s

d)

2 s

1 
sd

2 s 1 
sd

2 s

2 s

0.5-0.5 0.0
Ca2+ activity-pupil corr.

1

0

0.5

C
um

ul
at

iv
e 

pr
ob

. TMT

****

****

Control

0.5-0.5 0.0
Ca2+ activity-pupil corr.

1

0

0.5

C
um

ul
at

iv
e 

pr
ob

. Peanut

****

****
0.5-0.5 0.0

Ca2+ activity-pupil corr.

1

0

0.5

C
um

ul
at

iv
e 

pr
ob

.

Peanut

TMT

45 53

54 28 18 44 40 16

2

Distribution of longitudinally tracked neurons (%)

Figure 3. PnocBNST Neurons Encode Rapid Changes in Arousal to Aversive and Rewarding Stimuli

(A) Heatmap of individual data (top) and average group data (bottom) for pupil responses to control and TMT swabs (n = 4 mice).

(B) Heatmap of responses to the control and TMT swabs from all PnocBNST neurons, organized by their average response to the TMT swab.

(C) Response dynamics of PnocBNST neurons to the control and TMT swabs that showed significant excitatory, inhibitory, or no change in activity to the TMT swab

(n = 397 neurons).

(D) Heatmap of individual data (top) and average group data (bottom) for pupil responses to control and peanut swabs (n = 3 mice).

(E) Heatmap of responses to the control and peanut swabs from allPnocBNST neurons, organized by their average response to the peanut swab (n = 780 neurons).

(F) Response dynamics of PnocBNST neurons to the control and peanut swabs that showed significant excitatory, inhibitory, or no change in activity to the peanut

swab.

(G) Top: proportion of excitatory and inhibitory responsive cells when the TMT swab was in the Near (compared to Far) position. Bottom: proportion of excitatory

and inhibitory responsive cells when the peanut swab was in the Near (compared to Far) position.

(H) Correlation between Ca2+ activity dynamics of single PnocBNST neurons and pupil size when mice were exposed to the TMT swab (n = 397 neurons).

(I) Correlation between Ca2+ activity dynamics of single PnocBNST neurons and pupil size when mice were exposed to the control swab (excited and inhibited as

defined by their response to the TMT swab; n = 397 neurons).

(J) Correlation between Ca2+ activity dynamics of single PnocBNST neurons and pupil size when mice were exposed to the peanut swab (n = 780 neurons).

(K) Neuronal responses to TMT categorized by response to peanut oil. Data are shown as mean ± SEM. ****p < .0001.

For a description of statistical analysis and results shown in this figure, please refer to Table S1.
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odors, we hypothesized that this heterogeneity may be due to

the diversity of connectivity and gene expression patterns within

the PnocBNST neuronal population. To investigate connectivity,

we injected a Cre-dependent virus into the adBNST of Pnoc-

IRES-Cre mice to express both a cytosolic marker and a presyn-

aptic marker. We found presynaptic labeling from PnocBNST

neurons within multiple compartments of BNST (evidenced by

synaptophysin-mRuby expression), suggesting that these cells

form local connections among various BNST subnuclei. Notably,

we observed that presynaptic PnocBNST terminals overlapped

with both mGFP-labeled and unlabeled cells within the BNST,

indicating that PnocBNST neurons may form monosynaptic con-

nections with both Pnoc+ and Pnoc� neurons (Figure 5A).

Whole-cell patch-clamp electrophysiological recordings re-

vealed that light-evoked inhibitory postsynaptic currents were

detected in adBNST neurons following photostimulation of

PnocBNST neurons, which was blocked by bath application of a

GABAA receptor antagonist (gabazine; Figure 5B), confirming

local connectivity and the GABAergic phenotype of these cells.

Furthermore, local inhibition arising from PnocBNST activation

was detected in a greater proportion of recorded eYFP� neurons

(59%, putative non-PnocBNST neurons) but still present in eYFP+

neurons (31%, PnocBNST neurons) (Figure 5C). Taken together,

these data demonstrate thatPnocBNST neurons form localmono-

synaptic inhibitory connections with both putative Pnoc� and

Pnoc+ BNST neurons.

To identify projection targets from PnocBNST neurons, we

labeled these neurons (including their axonal projections) and

assessed the expression of their fluorescent markers in

distal target regions. Distal axonal labeling was observed pre-

dominantly within the medial amygdala (MeA) and medial pre-

optic area (mPOA), with sparse to near-absent labeling in other

adBNST output regions, including the arcuate nucleus (ARC),

lateral hypothalamic area (LHA), ventromedial hypothalamus

HG

A CB

I J LK
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PNM O

D Figure 4. PnocBNST Neurons Drive Arousal

Responses and Anxiety-like Behavior

(A) Schematic of an injection of AAV5-EF1a-DIO-

hChR2(H134R)-eYFP and implantation of fibers

into the BNST of a Pnoc-IRES-Cre mouse.

(B) Confocal image depicting expression of

ChR2-eYFP in PnocBNST neurons. LS, lateral

septum; ic, internal capsule; adBNST, ante-

rodorsal BNST; ac, anterior capsule. Inset:

confocal image at high magnification depicting

expression of ChR2-eYFP in PnocBNST neurons.

Scale bars, 40 mm.

(C) Schematic of patch-clamp electrophysiology

of ChR2-expressing Pnoc+ neurons.

(D) Sample neural response of a PnocBNST neuron

expressing ChR2 in response to blue light at

20 Hz. Group data showed 100% spike fidelity.

(E) Schematic of a tethered (for optogenetics)

freely moving mouse in an open field arena to

assess locomotion.

(F) Group average for velocity with photo-

activation of PnocBNST neurons (n = 8–9 per

group).

(G) Sample heatmap illustrating the location of a

mouse during photoactivation of PnocBNST neu-

rons during a real-time place preference assay

(RTPP).

(H) Group average for time spent in stimulation

side during RTPP with photoactivation of

PnocBNST neurons (n = 8-10 per group).

(I) Schematic of a head-fixed mouse in a cylin-

drical enclosure with an optical patch cable

(photoactivation), a heart rate monitor (pulse

oximeter), a movement monitor (piezo sensor),

and a camera (pupil).

(J–L) Group average for the change in movement

(J; n = 4 per group), heart rate (K; n = 4 per group),

and pupil size (L; n = 4 per group) with photo-

activation of PnocBNST neurons.

(M) Sample heatmap illustrating the location of a mouse during photoactivation of PnocBNST neurons during the elevated plus maze (EPM).

(N) Group average for time spent in open arms during EPM with photoactivation of PnocBNST neurons (n = 6–7 per group).

(O) Sample heatmap illustrating the location of a mouse during photoinhibition of PnocBNST neurons in the EPM using eNpHR3.0-eYFP.

(P) Group average for time spent in open arms during EPM with photoinhibition of PnocBNST neurons (n = 6–9 per group). Data are shown as mean ± SEM. *p <

0.05; **p < 0.01.

For a description of statistical analysis and results shown in this figure, please refer to Table S1.
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(VMH), parabrachial nucleus (PB), and periaqueductal gray

(PAG) (Figures 5D and 5E) (Calhoon and Tye, 2015; Jennings

et al., 2013a; Kim et al., 2013; Lebow and Chen, 2016). The

MeA and mPOA are two regions critical for social motivation (Li

et al., 2017; McHenry et al., 2017); therefore PnocBNST projec-

tions to these regions may be involved in social arousal.

To address whether PnocBNST neurons are composed of

distinct subpopulations of genetically identifiable neurons, we

used a single-cell sequencing approach using a droplet-based

method (Drop-seq) (Macosko et al., 2015) that allowed us to cap-

ture mRNA from 2,492 individual cells within the BNST (medians

of 1,435 genes per cell and 2,257 per cell unique transcripts; Fig-

ures 6A and S4A–S4F). We partitioned these cells into distinct

clusters using cluster analysis based on gene expression

patterns (Figures 6B and S4G). Out of 19 defined clusters, 11 ex-

pressed the canonical neuronal gene Camk2b, whereas the

remaining 8 clusters expressed knownmarkers for non-neuronal

cell types that defined astrocytes, oligodendrocytes, and oligo-

dendrocyte precursor cells. Our single-cell sequencing

approach revealed that Vgat is expressed more abundantly

than Vglut2 across all BNST neuronal clusters (Figure S4J). We

found that 88% of PnocBNST neurons were distributed among

4 of the 11 neuronal clusters (Figures 6C, 6D, S4H, and S4I)

that were differentiated by the expression of somatostatin

(Som), protein kinase C d (Pkcd), cholecystokinin (Cck), and the

zic family member 1 (Zic1). Furthermore, little to no overlap

(<5%) was observed between PnocBNST neurons and neuronal

clusters defined by the expression of forkhead box protein P2

(Foxp2), preproenkephalin (Penk), preprodynorphin (Pdyn), cal-

bindin 2 (Calb2), corticotropin-releasing hormone (Crh), neuro-

tensin (Nts), and Vglut3 (Slc17a8). FISH experiments corrobo-

rated a subset of our sequencing data (Figures 6E and 6F). In

summary, these data suggest that PnocBNST neurons can be

further subdivided into at least 4 unique cell types identified by

the coexpression of Som, Pkcd, Cck, and Zic1.

DISCUSSION

In the present study, we found that Pnoc expression defines a

subpopulation of GABAergic neurons within the BNST that are

associatedwith changes in physiological arousal.PnocBNST neu-

rons encode the rapid increase in arousal that occurs upon the

presentation of salient motivational stimuli. On their own, they

are unable to alter locomotion or avoidance/approach behaviors

but can bi-directionally modulate anxiety-like behavior. Further,

these neurons form local monosynaptic inhibitory connections

with bothPnoc� andPnoc+ neuronswithin the adBNST and proj-

ect to both the MeA and mPOA. In agreement with the observed

heterogeneity in PnocBNST response dynamics, we found that

PnocBNST neurons can be divided into at least 4 genetically

unique cell types that can be identified by co-expression of

Pnoc with either Som, Pkcd, Cck, or Zic1. Taken together, these

data show that PnocBNST neurons have a critical role in driving

rapid arousal responses that are characteristic of a variety of

motivational states and highlight the need for future studies to

further unravel the heterogeneity within this genetically identified

neuron population.

Elevated anxiety is a maladaptive state that is associated with

many neuropsychiatric conditions (Calhoon and Tye, 2015; Le-

Doux and Pine, 2016; Perusini and Fanselow, 2015). The mani-

festation of anxiety-like states includes both behavioral and

physiological responses that need to occur rapidly in order to

guide actions necessary for survival. Past research has devel-

oped an expansive literature on the neural circuits governing

anxiety-like behavioral actions (for reviews, see Calhoon and

Tye, 2015; Harris and Gordon, 2015; Shin and Liberzon, 2010;

B D

C

A

E

Figure 5. PnocBNST Neurons Exhibit Diver-

sity in Anatomical Connectivity

(A) Confocal image depicting the distribution of

PnocBNST somata and terminals (Syn, synapto-

physin-mRuby) after local injection of AAVdj-

HSyn-Flex-mGFP-2A-synaptophysin-mRuby.

Inset shows higher magnification of the adBNST.

LV, lateral ventricle; LS, lateral septum; adBNST,

anterodorsal BNST; avBNST, anteroventral

BNST; ic, internal capsule; ac, anterior commis-

sure. Scale bar, 40 mm.

(B) Left: schematic of patch-clamp electrophysi-

ology of ChR2-exressing Pnoc+ neurons. Right:

voltage-clamp traces from PnocBNST neurons

showing optically evoked inhibitory postsynaptic

currents (oeIPSCs) being blocked by GABAA re-

ceptor antagonist GABAzine (n = 4 neurons).

aCSF, artificial cerebral spinal fluid.

(C) Proportion of Pnoc� and Pnoc+ neurons ex-

hibiting oeIPSCs, no change, and optically evoked

excitatory postsynaptic currents (oeEPSCs).

(D) Quantification of fiber density (% of area) across distal regions showing fiber labeling in animals expressing ChR2-eYFP in PnocBNST neurons (n = 6). MeA,

medial amygdala; mPOA, medial preoptic area; ARC, arcuate nucleus; LHA, lateral hypothalamic area; VMH, ventromedial hypothalamus; PB, parabrachial

nucleus; PAG, periaqueductal gray.

(E) Confocal image depicting fibers from animals expressing eYFP in PnocBNST neurons in the posterodorsal portion of medial amygdala at �1.94 mm from

bregma (left) and the medial preoptic area at �0.10 mm from bregma (right). opt, optic tract; vBNST, ventral BNST. Scale bars, 40 mm.

For a description of statistical analysis and results shown in this figure, please refer to Table S1.
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Tovote et al., 2015), yet physiological arousal has received less

attention. Excessive arousal responses as measured by in-

creases in pupil size during threat exposure is commonly

observed in patients suffering from anxiety disorders (Cascardi

et al., 2015; Price et al., 2013). The presentation of negative

emotionally arousing images increases both pupil size and

amygdala activity (as measured by BOLD signaling) (Hermans

et al., 2013), but the relationship between these two variables

has remained elusive. fMRI lacks both the temporal resolution

needed to match the rapid changes in pupil size and the spatial

resolution to identify subregions and, more important, individual

neurons. In this study, we showed that changes in the activity

dynamics of individual PnocBNST neurons are correlated with

changes in pupil size and that these neurons are able to modu-

late anxiety-like behaviors. Therefore, PnocBNST neurons may

be a critical component for orchestrating excessive physiolog-

ical arousal responses in pathological anxiety.

Our findings highlight a diversity of response dynamics to

salient olfactory stimuli and genetically identifiable subtypes

within the PnocBNST neuronal population. Therefore, future

studies may want to address whether diverse responses are still

present during spontaneous states in the absence of motiva-

tional stimuli. Furthermore, experiments aimed at understanding

the role of PnocBNST subtypes during specific time windows

following presentation of arousal-inducing stimuli such as

rewarding stimuli, omission of reward, and cues that predict

them may also aid in understanding the role of this ensemble

in orchestrating rapid arousal responses during more complex

motivational states. It is important to note that studies that

directly inhibit PnocBNST neurons (and functional subtypes) are

needed to make causal conclusions about the role of this

ensemble in driving rapid arousal responses. We found that

PnocBNST neurons consist of an interconnected microcircuit of

GABAergic neurons within the BNST that may be classified by

the expression of distinct genetic markers (Som, Prkcd, Cck,

and Zic1). This further suggests that either functionally distinct

subtypes of PnocBNST neurons exist or molecularly distinct sub-

types of BNST neurons share a similar function. Therefore, future

studies are needed to systematically assess the causal role of

PnocBNST neuronal subtypes and their role in rapid arousal re-

sponses. For example, co-expression of Npy and Som has

been previously reported throughout the entire amygdala

(McDonald, 1989), suggesting that both of thesemarkers identify

a single neuronal cell type. Our data identify a similar neuronal

cluster characterized by the co-expression of Npy and Som. It

was previously shown that Npy-expressing neurons have a spe-

cific projection output to the preoptic region of the hypothalamus

(Pompolo et al., 2005). Our data show that at least a subset of

PnocBNST neurons share this projection. Taken together,

perhaps these three genetic markers (Pnoc, Npy, and Som)

may be used to target the sub-population of PnocBNST neurons

that project from the BNST to the mPOA. Considering the role

of mPOA in social avoidance/approach behavior (McHenry

et al., 2017), this projection may be important for social arousal.

A recent study showed that local photoactivation of all

SomBNST neurons drives anxiety-mediated avoidance in the

EPM (Ahrens et al., 2018). Therefore, how Pnoc+/Som+ and

Pnoc+/Som� neurons might differ in the regulation of anxiety-

like behavior and arousal responses deserves further investiga-

tion. Additionally, future studies using intersectional genetic

C

D

E

F

A

B

Figure 6. PnocBNST Neurons Exhibit Diver-

sity in Genetic Identity

(A) Schematic of the droplet-basedmethod (Drop-

seq) used to sequence RNA from thousands of

individual cells within BNST (cells, n = 2,492; mice,

n = 24).

(B) Gene expression pattern of BNST visualized in

tSNE space. Colors represent neuronal clusters.

(C) Distribution of Pnoc+ neurons across clusters

expressing >5% of Pnoc+ cells (left axis). Distri-

bution of the number of total cells and Pnoc+ cells

across the same clusters (right axis).

(D) Heatmap depicting expression of candidate

marker genes for the same neuronal cluster in

Figure 4C.

(E) Top: confocal image depicting the overlap

between the expression of Pnoc and Som within

BNST neurons using immunohistochemistry.

Scale bar, 40 mm. Bottom: distribution of Som+

neurons quantified using either Drop-seq (Seq) or

immunohistochemistry (IHC).

(F) Top: confocal image depicting the overlap

between the expression of Pnoc and Pkcd within

BNST neurons using immunohistochemistry.

Scale bar, 40 mm. Bottom: distribution of Pkcd+

neurons quantified using either Drop-seq (Seq) or

immunohistochemistry (IHC).
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approaches to target Pnoc and either PKCd, Cck, or Zic1 neu-

rons could help characterize the heterogeneity of activity re-

sponses we observed in distinct PnocBNST subsets. It is also

equally important to delineate how PnocBNST neurons may

interact with other local Pnoc+ neurons and local Pnoc� neuron

clusters, such as those expressing Foxp2, Penk, Pdyn, Calb2,

Crh, Nts, and Vglut3 (Gafford and Ressler, 2015; Hammack

et al., 2009; Kash et al., 2015; Lebow and Chen, 2016; McElligott

and Winder, 2009; Nguyen et al., 2016).

BNST neurons have also been distinguished by their projec-

tion targets in previous studies. For instance, PB-projecting neu-

rons regulate autonomic arousal states as measured by respira-

tion, whereas neurons projecting to the LHA regulate anxiety-like

behavior in the EPM (Kim et al., 2013; Kodani et al., 2017). A

recent study showed that BNST neurons that project to the

LHA can be further subdivided by the expression of the neuro-

peptidergic genes Crh and Cck. These neurons show an in-

crease in average calcium activity specific to a rewarding (female

mouse urine) or aversive odorant (TMT), respectively (Giardino

et al., 2018). Furthermore, chemogenetic activation of Vgat-ex-

pressing neurons within the BNST increases anxiety-like

behavior and leads to activation of the locus coeruleus (LC)

(Mazzone et al., 2018). Although these phenotypes are similar

to our findings with PnocBNST neurons, we did not observe

appreciable projections from PnocBNST neurons to either the

PB, LHA, or LC, indicating that PnocBNST neurons may be

distinct from both PB-, LHA- and LC-projecting neurons. None-

theless, whether local interactions between PnocBNST neurons

and either PB-, LHA-, or LC-projecting neurons within the

BNST exist remains an open question that warrants further

investigation.

Using advanced tools to probe neurons with single-cell resolu-

tion, wediscovered thatPnocBNST neurons encode rapid changes

in physiological arousal responses that can drive anxiety-like be-

haviors. However, these neurons are likely only a piece of the

complex mosaic of cell types within the BNST that contribute

toward arousal responding andmotivational states. Further inves-

tigations into how PnocBNST neurons and other BNST cell types

differentially and synergistically control rapid arousal responses

will shed light onto how the BNST and the larger network of brain

regions that regulate motivational states contribute to the devel-

opment and perpetuation of neuropsychiatric disorders charac-

terized by maladaptive motivational states.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Animals

d METHOD DETAILS

B Fluorescent In Situ Hybridization

B Immunohistochemistry

B Confocal Microscopy

B Viral Constructs

B Surgery and Histology

B Patch-Clamp Electrophysiology

B Odor Preference in Freely-moving Mice

B Two-Photon Calcium Imaging in Head-fixed Mice

B Head-fixed Odor Swab Exposure with Pupillometry

B Optogenetics

B Real-Time Place Preference

B Head-fixed Stationary Assay with Pupillometry

B Elevated Plus Maze

B Tissue Isolation and Single-cell cDNA Library Prepara-

tion

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Behavioral Optogenetics and Electrophysiology Data

Analysis

B Calcium Imaging Analysis

B Single-Cell Sequencing Clustering and Analysis

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2020.108362.

ACKNOWLEDGMENTS

We thank Hiroyuki K. Kato, Anthony Burgos-Robles, Maria M. Diehl, Fabri-

cio H. Do-Monte, Ivan Trujillo-Pisanty, and Gregory J. Quirk for helpful dis-

cussions and comments on the manuscript. We thank K. Deisseroth and

the GENIE project at Janelia Research Campus for viral constructs. This

work was supported by the National Institute of Mental Health (F32-

MH113327 to J.R.-R., F30-MH115693 to R.L.U., K99-MH118422 to

V.M.K.N., T32-MH093315 and K99-MH115165 to J.A.M., and R01-

MH112355 to M.R.B.), National Institute of Neurological Disorders and

Stroke (T32-NS007431 to R.L.U.), National Heart, Lung, and Blood Institute

(R01-HL150836 to M.R.B.), National Institute on Drug Abuse (F32-

DA041184 to J.M.O. and R37-DA032750 and R01-DA038168 to G.D.S.),

Children’s Tumor Foundation (016-01-006 to J.E.R.), Brain and Behavior

Research Foundation (to V.M.K.N. and G.D.S.), Yang Biomedical Scholars

Award (to G.D.S.), Foundation of Hope (to G.D.S.), UNC Neuroscience

Center (to G.D.S.), Helen Lyng White Fellowship (to V.M.K.N.), UNC Neuro-

science Center Microscopy Core (P30-NS045892), and UNC Department of

Psychiatry (to G.D.S.).

AUTHOR CONTRIBUTIONS

Conceptualization, J.R.-R., R.L.U., and G.D.S.; Investigation, J.R.-R., M.L.B.,

J.M.O., H.N., J.E.R., X.Z., H.E.v.d.M., J.A.M., L.E.H.E., and O.K.; Formal Anal-

ysis, R.L.U., J.R.-R., M.L.B., J.M.O., V.M.K.N., H.N., and G.D.S.; Resources,

T.C.J., T.L.K., and M.R.B.; Writing – Original Draft, J.R.-R., R.L.U., and

G.D.S., Writing – Review & Editing, J.R.-R., R.L.U., and G.D.S.; Fund Acquisi-

tion, G.D.S.; Supervision, G.D.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 21, 2020

Revised: August 18, 2020

Accepted: October 19, 2020

Published: November 10, 2020

Cell Reports 33, 108362, November 10, 2020 9

Article
ll

OPEN ACCESS

https://doi.org/10.1016/j.celrep.2020.108362
https://doi.org/10.1016/j.celrep.2020.108362


REFERENCES

Ahrens, S., Wu, M.V., Furlan, A., Hwang, G.-R., Paik, R., Li, H., Penzo, M.A.,

Tollkuhn, J., and Li, B. (2018). A Central Extended Amygdala Circuit That Mod-

ulates Anxiety. J. Neurosci. 38, 5567–5583.

Alles, J., Karaiskos, N., Praktiknjo, S.D., Grosswendt, S., Wahle, P., Ruffault,

P.-L., Ayoub, S., Schreyer, L., Boltengagen, A., Birchmeier, C., et al. (2017).

Cell fixation and preservation for droplet-based single-cell transcriptomics.

BMC Biol. 15, 44.

Boom, A., Mollereau, C., Meunier, J.C., Vassart, G., Parmentier, M., Vander-

haeghen, J.J., and Schiffmann, S.N. (1999). Distribution of the nociceptin

and nocistatin precursor transcript in the mouse central nervous system.

Neuroscience 91, 991–1007.

Calhoon, G.G., and Tye, K.M. (2015). Resolving the neural circuits of anxiety.

Nat. Neurosci. 18, 1394–1404.

Cascardi, M., Armstrong, D., Chung, L., and Paré, D. (2015). Pupil Response to
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Garret D.

Stuber (gstuber@uw.edu).

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

chicken anti-GFP (1:1,000) Aves Labs cat. no. GFP-1020; RRID: AB_10000240

mouse anti-PKCd (1:500) BD Biosciences cat. no. 610398; RRID: AB_397781

rabbit anti-Somatostatin (1:2,000) BMA Biomedicals cat. no. T-4103; RRID: AB_518614

donkey anti-Chicken 488 (1:500) Jackson Immuno Research Labs cat no. 703-545-155; RRID: AB_2340375

donkey anti-Mouse 647 (1:500) Jackson Immuno Research Labs cat no. 715-605-150; RRID: AB_2340862

donkey anti-Rabbit 647 (1:500) Jackson Immuno Research Labs cat no. 711-605-152; RRID: AB_2492288

Bacterial and Virus Strains

AAVdj-hSyn-Flex-mGFP-2A-synaptophysin-mRuby

(5.0 3 108 infectious units/mL)

Stanford Gene Vector & Virus

Core

cat. no. GVVC-AAV-100

AAVdj-EF1a-DIO-GCaMP6s (3.1 3 1012 infectious units/mL) UNC Vector Core N/A

AAV5-EF1a-DIO-hChR2(H134R)-eYFP (4.3 3 1012 infectious

units/mL)

UNC Vector Core N/A

AAV5-EF1a-DIO-eNpHR3.0-eYFP (8.0 3 1012 infectious

units/mL)

UNC Vector Core N/A

AAV5-EF1a-DIO-eYFP (6.0 3 1012 infectious units/mL) UNC Vector Core N/A

Chemicals, Peptides, and Recombinant Proteins

Mm-Pnoc probe ACDBio cat. no. 437881

Mm-Slc32a1 (Vgat) probe ACDBio cat. no. 319191

Mm-Slc17a6-C2 (Vglut2) probe ACDBio cat. no. 319171

Mm-CaMKIIa-cust-C2 probe ACDBio cat. no. 411851

GABAzine (SR 95531 hydrobromide) Tocris cat. no. 1262

2,4,5-Trimethylthiazoline Forestry Distributing cat. no. 300000368

Peanut oil Harris Teeter N/A

Critical Commercial Assays

RNAscope Kit ACDBio cat. no. 320293

Experimental Models: Organisms/Strains

prepronociceptin-IRES-Cre mice This paper N/A

C57BL/6J mice Jackson Laboratory N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij

Prism 7 GraphPad https://www.graphpad.com

Python Anaconda https://www.anaconda.com/

Mosaic Inscopix https://www.inscopix.com

SIMA v1.3 (Kaifosh et al., 2014) https://github.com/losonczylab/sima

CNMF (Zhou et al., 2018) https://github.com/zhoupc/CNMF_E

Drop-seq data analysis scripts (Python) This paper https://github.com/stuberlab

Calcium Imaging data analysis scripts (Python) This paper https://github.com/stuberlab

Deposited Data

Single cell sequencing data GEO accession no. GSE132067
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Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The code generated during this study are available at https://github.com/stuberlab. Single cell sequencing data are available at GEO:

GSE132067. All other data are available upon request from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Adult (25-30 g) male prepronociceptin-IRES-Cre (Pnoc-IRES-Cre) or wild-type mice (C57 BL6/J) were independently housed and

maintained on a reverse 12-hr light-dark cycle (lights off at 08:00 AM) with ad libitum access to food and water. Behavior was tested

during the dark cycle. All procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals, as

adopted by the National Institute of Health, and with the approval of the Institutional Animal Care and Use Committee from the Uni-

versity of North Carolina at Chapel Hill.

METHOD DETAILS

Fluorescent In Situ Hybridization
For processing tissue samples for in situ hybridization, micewere anesthetizedwith isoflurane (3.5%–4.0%) vaporized in pure oxygen

(1 L/min), rapidly decapitated and brains immediately extracted, and flash frozen on dry ice. 18 mm thick coronal sections were

collected with a cryostat under RNase-free conditions, fixed in 4% PFA for 15 min at 4�C, dehydrated in serial concentrations of

ethanol (50%–100%), and processed according to instructions provided in the RNAscope kit (Advanced Cell Diagnostics, Newark,

CA). Sections were hybridized with the following mixed probes: Pnoc (Mm-Pnoc, cat. no. 437881), Vgat (Mm-Slc32a1, cat. no.

319191), Vglut2 (Mm-Slc17a6-C2, cat. no. 319171), CaMKIIa (Mm-Camk2a-cust-C2, cat. no. 411851). Hybridization probes used

can also be found in supplementary information (Table S1). Following amplification, sectionswere counterstainedwith DAPI and cov-

erslipped for subsequent confocal microscopy and counted using ImageJ software.

Immunohistochemistry
For processing tissue samples for immunohistochemistry, mice were euthanized with pentobarbital (50 mg.kg, 1.p.) and transcar-

dially perfused with 0.01 M phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA). Tissue was fixed overnight in PFA

at 4�C, cryoprotected with 30% sucrose in PBS, and 40 mm thick coronal sections were collected with a cryostat. Immunochemistry

was performed in Pnoc-IRES-Cremice using the following primary (kept overnight at 4�C) and secondary (kept at room temperature

for 2 h) antibodies: chicken-anti-GFP (1:1,000; Aves labs, Tigard, OR), donkey anti-chicken 488 (1:500; Jackson Immuno Research

Labs, West Grove, PA), mouse anti-PKCd (1:500; BD Biosciences, Fanklin Lakes, NJ), donkey anti-mouse 647 (1:500; Jackson Im-

muno Research Labs, West Grove, PA), rabbit anti-Somatostatin (1:2,000; BMA Biomedicals, Switzerland), and donkey anti-rabbit

647 (1:500; Jackson Immuno Research Labs, West Grove, PA). Antibodies used with dilutions can also be found in supplementary

information (Table S1). Immunoprocessing procedures were done as previously described (Jennings et al., 2013a), and sectionswere

counterstained with DAPI and coverslipped for subsequent confocal microscopy and counted using ImageJ software.

Confocal Microscopy
A confocal microscope (Zeiss LSM 780, Carl Zeiss, San Diego, CA) with either a 20x (air), 40x (air), or a 63x (oil) objective was used to

capture images. Software (Zen Software, Carl Zeiss, Jena, Germany) settings were optimized for each experiment. In general,

z stacks were acquired in less than 1 mm increments and the maximum intensity projection of tiled images were used for represen-

tative images or for quantification purposes.

Viral Constructs
All viral constructs [Cre-inducible AAVdj-EF1a-DIO-GCaMP6s (3.1 3 1012 infectious units/mL), AAV5-EF1a-DIO-hChR2(H134R)-

eYFP (4.3 3 1012 infectious units/mL), AAV5-EF1a-DIO-eNpHR3.0-eYFP (8.0 3 1012 infectious units/mL), AAV5-EF1a-DIO-eYFP

(6.03 1012 infectious units/mL), and AAVdj-hSyn-Flex-mGFP-2A-synaptophysin-mRuby (5.03 108 infectious units/mL)] were pack-

aged by the UNC Vector Core and can also be found in supplementary information (Table S1).

Surgery and Histology
Mice were anesthetized with isoflurane (0.8%–1.5%) vaporized in pure oxygen (1 l/min-1) and placed in a stereotaxic frame (David

Kopf Instruments, Tujunga, CA). Ophthalmic ointment (Akorn, Lake Forest, IL) and topical anesthetic (2% lidocaine; Akorn, Lake For-

est, IL) were applied during surgeries, and subcutaneous administration of saline (0.9%NaCL in water) were administered to prevent

dehydration. Microinjections using injection needles (33 gauge) connected to a 2 uL syringe (Hamilton Company, Reno, NV) were

used to deliver viruses into the anterior dorsal portion of the bed nucleus of the stria terminalis (adBNST; 500 nL per side; relative
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to bregma: +0.14 AP, +/�0.95ML, DV�4.20 DV). For calcium imaging studies, unilateral virus injections weremade into adBNST. To

allow subsequent imaging of BNST neurons, a microendoscope [a gradient refractive index (GRIN) lens, 0.6 mm in diameter, 7.3 mm

in length; Inscopix, Palo Alto, CA] was implanted 0.2 mm dorsal to the adBNST target site.

For optogenetic studies, bilateral virus injections were made into BNST, and an optical fiber was implanted with a 10� angle

approximately 0.5 mm above the BNST. For experiments involving head-fixed behavior, a custom-made head-ring (stainless steel;

5 mm ID, 11 mmOD) was attached to the skull during surgery to allow head-fixation. Following surgeries, mice were given acetamin-

ophen in their drinking water for 2 days and were allowed to recover with access to food and water ad libitum for at least 21 days.

Following behavioral experiments, all cohorts were euthanized and perfused, tissue was extracted and 40 mm thick coronal sections

collected with a cryostat, counterstained with DAPI and coverslipped for verification of viral expression and fiber/lens placement.

Patch-Clamp Electrophysiology
Mice were anesthetized with pentobarbital (50mg/kg) before transcardial perfusion with ice-cold sucrose cutting solution containing

the following (in mM): 225 sucrose, 119 NaCl, 1.0 NaH2PO4, 4.9 MgCl2, 0.1 CaCl2, 26.2 NaHCO3, 1.25 glucose, 305 mOsm. Brains

were then rapidly removed, and 300 mm thick coronal sections containing BNST were taken using a vibratome (Leica, VT 1200, Ger-

many). Sections were then incubated in aCSF (32�C) containing the following (in mM): 119 NaCl, 2.5 KCl, 1.0 NaH2P04, 1.3 MgCl, 2.5

CaCl2, 26.2 NaHCO3, 15 glucose,�306mOsm. After an hour of recovery, slices were constantly perfused with aCSF (32�C) and visu-

alized using differential interference contrast through a 40x water-immersion objective mounted on an upright microscope (Olympus

BX51WI, Center Valley, PA). Recordings were obtained using borosilicate pipettes (3–5MU) back-filled with internal solution contain-

ing the following (in mM): 130 K gluconate, 10 KCl, 10 HEPES, 10 EGTA, 2 MgCl2, 2 ATP, 0.2 GTP (pH 7.35, 270-285 mOsm.

Current-clamp recordings were obtained fromGCaMP6s-expressing PnocBNST neurons to identify how action potential frequency

correlated with GCaMP6s fluorescence as previously described (Otis et al., 2017). Specifically, to determine how elevations in action

potential frequency influenceGCaMP6s fluorescence, a 1 s train of depolarizing pulses (2 nA, 2ms) was applied at a frequency of 1, 2,

5, 10, or 20 Hz. During electrophysiological recordings, GCaMP6s fluorescence dynamics were visualized using a mercury lamp

(Olympus U-RFL-T, Center Valley, PA) and a microscope-mounted camera (QImaging, optiMOS, Canada). Imaging data were ac-

quired using Micro-Manager and extracted through hand-drawn ROIs for each recorded neuron using ImageJ. In addition to these

experiments, we also performed current-clamp recordings to determine the spike fidelity ofPnocBNST ChR2-expressing neurons dur-

ing optogenetic stimulation. To do so, neurons were held at resting membrane potential (n = 7), and a blue LED (490nm; 1 mW) was

presented in a series of 10 pulses (5 ms per pulse) at 1, 5, 10, and 20 Hz. We found that every pulse evoked an action potential for all

neurons, suggesting 100% spike fidelity across cells.

Voltage-clamp recordings were obtained fromBNST ChR2-expressing neurons (Pnoc+), and BNST non-ChR2 expressing neurons

(Pnoc-) to identify local synaptic innervation of PnocBNST neurons. To determine if a neuronwas Pnoc+, we held all cells at�70mV and

tested for the presence of ChR2 by displaying a blue LED (490nm; < 1mW) for 1 s. In the case that a long, stable inward current was

evoked for the duration of that sweep, the neuron was confirmed to be Pnoc+ and ChR2+ (n = 26). Otherwise, the neuron was

assumed to be Pnoc- and ChR2- (n = 37). We did not detect the presence of any transient, optically-evoked excitatory postsynaptic

current (oeEPSC) during these sweeps, suggesting that PnocBNST neurons do not release excitatory transmitters within this circuit.

Next, we held all neurons at the reversal potential for ChR2 (+5 to +15mV forPnoc+ neurons; +10mV forPnoc- neurons) and tested for

the presence of an optically-evoked inhibitory postsynaptic current (oeIPSC) by displaying the blue LED for 5 ms. In a subset of cells,

we tested whether the oeIPSC was mediated by GABAA receptors by bath-applying GABAzine (10 uM) for 5 minutes. For all voltage-

clamp experiments, data acquisition occurred at a 10 kHz sampling rate. All patch-clamp recordings were made through a

MultiClamp 700B amplifier connected to a Digidata 1440A digitizer (Molecular Devices, San Jose, CA) and analyzed using Clampfit

10.3 (Molecular Devices, San Jose, CA).

Odor Preference in Freely-moving Mice
Mice were habituated to have a square block holder in their home cage for 2 days prior to testing. The day of testing, a cotton swab

was placed in the square block holder located in an upright position 4 in from the home cage floor on one of the sides (sides were

alternated across all mice). Mice behavior was recorded for a 5-min period after placing 2.5 mL of water (distilled H2O) in the cotton

swab, followed by placing either 2.5 mL of TMT or 2.5 mL of Peanut oil (same as head-fixed experiment) in the cotton swab. Distance to

odor (cm, max: 25 cm), time spent freezing (s), and velocity (cm/s) were calculated using automated tracking software (Ethovision XT

11, Noldus, Leesburg, VA). Similar to head-fixed odor exposure experiments, a low dose of TMT was used to minimize freezing re-

sponses and maintain ambulation.

Pupil recordings were made in freely moving animals using the same camera system used for head-fixed experiments but using a

triangle shape arena of similar size to the home cage with one of the corners having a 45-degree angle where the cotton swab was

placed. A transparent plexiglass wall would allow viewing of the pupil whenmice explored the cotton swab at close proximity. Images

of the pupil where captured during the first 10 s bouts of exploration.

Two-Photon Calcium Imaging in Head-fixed Mice
A two-photon microscope (FVMPE-RS, Olympus, Center Valley, PA) was used to visualize activity dynamics of Pnoc+ neurons in

BNST in vivo in head-fixedmice while they underwent odor exposure with pupillometry. A virus encoding the Cre-dependent calcium
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indicator GCaMP6s (AAVdj-EF1a-DIO-GCaMP6s; 3.1 3 1012 infectious units/mL) was injected into BNST of Pnoc-IRES-Cre mice

(see Surgery and histology section). After a minimum of 8 weeks to allow sufficient time for virus transport and infection, mice under-

went the head-fixed freely moving odor exposure assay described above, during which GCaMP6s-expressing neurons were visu-

alized using two-photon microscopy.

The two-photon microscope used was equipped with the following to allow imaging of BNST in vivo: a hybrid scanning core set

with galvanometers and fast scan resonant scanners (which allows up to 30 Hz frame -rate acquisition; set at 5 Hz), GaAsP-PMT

photo detectors with adjustable voltage, gain, and offset features, a single green/red NDD filter cube, a long working distance

20x objective (air) designed for optical transmission at infrared wavelengths (LCPLN20XIR, 0.45 NA, 8.3 mm WD, Olympus, Center

Valley, PA), a software-controlled modular xy stage loaded on a manual z-deck, and a tunable Mai-Tai Deep See laser system (laser

set to 955 nm, �100 fs pulse width, Spectra Physics, Santa Clara, CA) with automated four-axis alignment. Prior to testing, the

optimal field of view (FOV) was selected by adjusting the imaging plane (z-axis). Two-photon scanning was triggered by an Arduino

microcontroller and video was collected for each testing epoch (baseline, water or odor). Data were both acquired and processed

using FluoView FV1200 and CellSens software packages (Olympus, Center Valley, PA). Following data acquisition, videos were mo-

tion corrected using a planar hidden Markov model (SIMA v1.3) (Kaifosh et al., 2014), calcium transients and deconvolved events

were extracted from individual ROI’s using constraint non-negative matrix factorization algorithms (CNMF) (Zhou et al., 2018) and

data was analyzed using custom data analysis pipelines written in Python (see Quantification and Statistical Analysis section).

Head-fixed Odor Swab Exposure with Pupillometry
For exposing odors in head-fixed freely moving mice, experimental events and behavioral recordings were orchestrated using

custom-designed hardware interfaced with microcontrollers (Arduino) and Python using custom code. Odor delivery relied on a

custom-made conveyor system that carried a cotton swab with odor source along a 25-cm track over 6 s to and from the animal.

The cotton swab remained in close proximity to the animal for a 10 s bout. We assessed locomotor activity of head-fixed animals

using a custom-made running disc. The disc was fixed under the head-fixed animal, which allowed movement similar to a rodent

flying saucer wheel. Rotational changes were measured by a rotary encoder (Sparkfun, Boulder, CO) every 50 ms without regard

to direction of rotation. Pupil recordings were made using a monochromatic CMOS camera with macro zoom lens (MVL7000 &

DCC1545M, ThorLabs, Newton, NJ) at 10 frames per second. An infrared light (Thorlabs, Newton, NJ) was used to illuminate the

eye in optogenetic experiments. For two-photon experiments, the illumination light from the objective was sufficient to visualize

the eye (here the light transmitted through nervous tissue and out the pupil, thus the pupil was brighter than the cornea). An ultraviolet

light (Thorlabs, Newton, NJ) was used to adjust the pupil size to avoid a ceiling or floor effect of pupil changes as necessary.

Experimentation began after minimal pupillary responses were observed to the approaching of a dry cotton swab (6 days). The day

of testing, mice were exposed to 3 epochs (5 minutes each) that consisted of 5 baseline bouts (dry cotton swab), 5 control bouts

(cotton swab with 2.5 mL of distilled H2O), and 5 odor bouts (cotton swab with wither 2.5 mL of TMT or 2.5 mL of Peanut oil). The first

2 bouts of each epoch were used for analysis to assess responses. A low dose of TMT was used to minimize freezing responses and

maintain ambulation.

Pupil changes were assessed offline after experimentation. A median filter was applied to each pupil recording frame before pupil

diameter was measured. We used OpenCV to identify the pupil within each frame and morphological processing (erosion and dila-

tion) to further filter noise from the image. The diameter of the pupil was measured by fitting a bounding box, and the length of its

horizontal sides were used as the pupil diameter since this also measured pupil diameter fairly well during mid-blink. Calculated

diameter measures were then filtered using a rolling 1 s median filter.

Optogenetics
Optogenetic experiments were performed as previously described (Sparta et al., 2011). Briefly, a virus encoding the Cre-inducible

channel-rhodopsin-2 (AAV5-ef1a-DIO-hChR2(H134R)-eYFP; 5.0 3 1012 infectious units per ml) was injected into BNST of either

Pnoc-IRES-Cre mice or their wild-type littermates as controls. For photoactivation manipulations in ChR2 or control mice, the laser

(473 nm; 8–10mW) was turned on for 5-ms pulses (20 Hz) during a 3min period, followed or preceded by 3min periods were the laser

was off. All mice were habituated to the tether for 3 days prior to behavioral testing. Following behavioral experiments, histological

verification of fluorescence and optical fiber placement were performed.

Real-Time Place Preference
Mice were placed into a rectangular two-compartment arena (52.5 3 25.5 3 25.5 cm) as previously described (Jennings et al.,

2013a). Mice were allowed to freely explore the arena for 20min. Entry into one of the compartments triggered constant 20 Hz photo-

stimulation (473 nm; 8–10 mW). Entry into the other chamber ended the photostimulation. The side paired with photostimulation was

counterbalanced across mice. Time spent in the stimulation side was calculated using automated tracking software (Ethovision XT

11, Noldus, Leesburg, VA).

Head-fixed Stationary Assay with Pupillometry
Mice were head-fixed as previously described (Otis et al., 2017). Physiological and licking measures were obtained using a custom

designed apparatus. A piezo sensor under the mouse monitored general movement in the tube. A pulse oximeter placed near the
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neck was used to measure heart rate. Mice received unpredictable drops of sucrose (10% in water, 2.0-2.5 ml, �1 drop/min) for

30 min using a gravity-driven solenoid through a �18-G steel tube. Mice were habituated to the setup for 6 days. Measurements

were recorded using a LabJack data acquisition box (U12 Series, LabJack Corp., Lakewood, CO). Oncemice habituated to the appa-

ratus, as evident by a reduced heart rate as compared to Day 1 (6 days), optogenetic experiments were performed while pupil videos,

movement (piezo sensor) and heart rate (pulse oximeter) was trackedwith an Arduinomicrocontroller and recordedwith custom soft-

ware (written in Python) during a single laser off (3 min) and laser on (3 min) period.

Elevated Plus Maze
Mice were placed in a standard elevated plus maze (EPM; 13. 5 in height; 25 in x 2 in for each arm, 7 in tall wall for closed arms,

0.5 in tall/wide ledge for open arms). Mice were placed in the center of the EPM and allowed to freely explore it for 10 min. Dis-

tance to center (cm) and time spent in each arm (s) were calculated using automated tracking software (Ethovision XT 11, Noldus,

Leesburg, VA).

Tissue Isolation and Single-cell cDNA Library Preparation
Mice were anesthetized with 390 g/kg sodium pentobarbital, 500 mg/kg phenytoin sodium and transcardially perfused with 20 mL

in ice-cold sodium-substituted aCSF (NMDG-aCSF: 96 mM NMDG, 2.5 mM KCl, 1.35 mM NaH2PO4, 30 mM NaHCO3, 20 mM

HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na+ascorbate, 3 mM Na+pyruvate, 0.6 mM glutathione-ethyl-ester, 2 mM

N-acetyl-cysteine, 0.5 mM CaCl2, 10 mM MgSO4; pH 7.35–7.40, 300-305 mOsm) modified from Ting et al. (2014). Brains were

isolated and three 300 mm sections beginning at �0.45 mm Bregma were collected in ice-cold NMDG-aCSF on a vibratome (Leica,

VT 1200, Germany). Sections from 6 mice at a time (total of 4 batches with 24 mice) were recovered in NMDG-aCSF supple-

mented with 500 nM TTX, 10 mM APV, 10 mM DNQX (NMDG-aCSF-R) for 15 minutes after the addition of the last slice. The

BNST was then isolated with 0.75 and 0.50 mm Palkovitz punches and digested in NMDG-aCSF-R containing 1.0 mg/mL pronase

for 30 minutes at room temperature. Tissue was then triturated with a patch pipet fire-polished to an internal diameter of 300 mm in

1.0 mL of NMDG-aCSF-R supplemented with 0.05% BSA (NMDG-aCSF-BSA) to dissociate. The suspension transferred to 12 mL

NMDG-aCSF-BSA and sedimented at 220 x g for 6 minutes at 18�C to wash. The supernatant was removed, and cells were re-

suspended in 1 mL NMDG-aCSF-BSA. To fix the cells (Alles et al., 2017), 4.0 mL of ice-cold 100% methanol was added dropwise

to the suspension while gently swirling the tube. Cells were then incubated for 30 minutes on ice and transferred to �80�C. To
rehydrate suspensions prior to Drop-seq, cells were removed from �80�C and incubated on ice for 15 minutes. Cells were

then sedimented at 500 x g for 5 minutes at 4�C, resuspended in 5 mL of PBS supplemented with 0.01% BSA (PBS-BSA),

and incubated for 5 minutes on ice. The suspension was then sedimented at 220 x g for 6 minutes at 18�C and resuspended

in 1.0 mL of PBS-BSA for a final concentration of �2.6-3.2 3 105 cells/mL. Rehydration and droplet generation was performed

on fixed samples within 3 weeks of fixation.

Drop-seq was performed as previously described in with modifications (Macosko et al., 2015). Single-cell capture was performed

on a glassmicrofluidics device (DolomiteMicrofluidics, United Kingdom) with aqueous flow at 40 mL/min and oil at 200 mL/min. Beads

were loaded at�200 beads/mL. Reverse transcription, ExoI digestion, and PCRwere performed as previously described, but with 11

cycles for second stage of amplification. PCR products were pooled by batch, purified on SPRI beads (Axygen, Union City, CA), and

indexed using Nextera XT with 800 pg input per batch. Purified tagmentation products were pooled by mass according to the esti-

mated number of cells per pool member as quantified by a Qubit dsDNA HS Assay. Sequencing was performed at the UNC High

Throughput Sequencing Facility on a lllumina HiSeq2500 using Paired-End 2x50 Rapid Run v2 chemistry.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral Optogenetics and Electrophysiology Data Analysis
For data obtained from the optogenetic and patch-clamp electrophysiology experiments, data were analyzed using Prism 7

(GraphPad Sotware Inc., La Jolla, CA). Mean values are accompanied by SEM values. Comparisons were tested using paired or

unpaired t tests. Two-way ANOVA tests followed by either Tukey’s post hoc tests or Bonferroni post hoc comparisons were applied

for comparisons with more than two groups, n.s. p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.

Calcium Imaging Analysis
Calcium imaging recordings were first motion corrected using a planar hidden Markov model (Kaifosh et al., 2014). Neurons were

identified, and their calcium signals were extracted using a modified version of constrained nonnegative matrix factorization

(CNMF) (Zhou et al., 2018), allowing us to segregate spatially overlapping signals. This extracted signal was adjusted (scaled) to

account for variations in fluorescence intensities among cells by the standard deviation of a neuron’s fluorescence throughout the

Control odor exposure. For head-fixed, odor-presentation experiments, neuronal activity was aligned to the presentation of the

odor. Neuronswere classified as excitatory or inhibitory to proximity of TMT or Peanut oil if the fluorescence values for frames differed

between near and far location—defined using aMann-Whitney U test with Bonferroni correction. Correlations in activity and behavior

were calculated using the Spearman correlation coefficient.
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Single-Cell Sequencing Clustering and Analysis
Demultiplexing was performed allowing 1 mismatch with Illumina bcl2fastq v2.18.0.12. Initial processing and generation of digital

expression matrices was performed with Drop-seq_tools v1.12 and Picard Tools v2.2.4 (Macosko et al., 2015). Alignment was

performed using STAR v2.4.2a with 72 GB of RAM and 16 threads. Clustering was performed in R using Seurat v1.4.0.16 unless

otherwise noted. Prior to clustering, cells were filtered byR 500 unique genes, % 20,000 unique molecules, and% 5 percent mito-

chondrial reads. Filtered data was scaled to the median number of unique molecules and log(x+1) transformed. Zero-variance genes

were removed from the data, and batch correction was performed with ComBat (Johnson et al., 2007) from SVA v3.220 (Leek et al.,

2012) using parametric adjustment on a model matrix containing number of unique genes and molecules, and percent mitochondrial

reads. Four batches were included, each containing six animals that were pooled during tissue isolation. Relative log expression by

cell and mean expression correlation across batches were used to assess the correction. Only genes detected in all batches were

included in the analysis.

Variable genes were selected with a cutoff of 0.5 standard deviations from the mean dispersion within a bin (Macosko et al., 2015).

Variable genes were used as the basis for principal components analysis, and cluster calling was performed on principal components

using the Louvain algorithm with multilevel refinement under default settings. Principal components were reduced and visualized via

t-distributed stochastic neighbor embedding (tSNE) using the first 20 components and a resolution of 1.3. Clusters were reordered on

a hierarchically-clustered distance matrix based on all genes. Features were identified using a single-cell likelihood-ratio test6 imple-

mented in Seurat. To identify cluster-specific features, genes in each cluster were tested against those in either the nearest cluster or

node in the hierarchically-clustered dendrogram. Analysis from pre-processing to digital expression matrices were run on a Dell

blade-based cluster running RedHat Enterprise Linux 5.6. Cluster calling and tSNE were run on a similar cluster running RedHat En-

terprise Linux 7.3. All other steps were run on macOS 10.13.3.
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SUPPLEMENTAL TABLE, FIGURES, AND LEGENDS: 
 
Table S1. Description of statistical analysis and results. Related to Figures 1,2,3,4,5,S2,S3. 

STATISTICAL ANALYSIS 
Figure # of Samples  Test Test statistic p value 
Figure 1    
G; Evoked 
fluorescent/spike 
relationship 

n = 10 Pnoc+ neurons  Pearson 
correlation 
coefficient 

r = 0.996 p<0.001 

Figure 2    
B; Time in odor zone when 
exposed to the control and 
TMT swabs 
 

n = 4 wild type mice Paired t-test t3=6.518 p=0.0073 

C; Time in odor zone 
when exposed to the 
control and peanut swabs 
 

n = 4 wild type mice Paired t-test t3=6.277 p=0.0082 

E; Pupil size when 
exposed to the control and 
TMT swabs 
 

n = 4 wild type mice Paired t-test t3=3.604 p=0.0367 

F; Pupil size when 
exposed to the control and 
peanut swabs 

n = 4 wild type mice Paired t-test t3=4.298 p=0.0232 

Figure 3   
H; Correlation between 
Ca2+ activity and pupil size 
when mice were exposed 
to the TMT swab 
(responses defined by 
exposure to the TMT 
swab) 

n = 397 Pnoc+ 
neurons 

Mann-
Whitney U 
test, 
significance 
level 
adjusted 
using 
Bonferroni 
correction 

Excited vs No 
Change: 
U=2527.0 
Inhibited vs No 
Change: 
U=1671.0 

 
 
p=6.5808e-31 
 
 
p=1.0754e-25 

I; Correlation between 
Ca2+ activity and pupil size 
when mice were exposed 
to the control Swab 
(responses defined by 
exposure to the TMT 
swab) 

n = 397 Pnoc+ 
neurons 

Mann-
Whitney U 
test, 
significance 
level 
adjusted 
using 
Bonferroni 
correction 

Excited vs No 
Change: 
U=11474.0 
Inhibited vs No 
Change: 
U=7683.0 

 
 
p=2.9406 
 
 
p=1.6152 

J; Correlation between 
Ca2+ activity and pupil size 
when mice were exposed 
to the peanut swab 
(responses defined by 

n = 780 Pnoc+ 
neurons 

Mann-
Whitney U 
test, 
significance 
level 

Excited vs No 
Change: 
U=24140.0 
Inhibited vs No 
Change: 

 
 
p=8.8104e-56 
 
 



exposure to the peanut 
swab) 

adjusted 
using 
Bonferroni 
correction 

U=971.0 p=8.9200e-8 

Figure 4   
F; Velocity n = 8 ChR2-Cre- mice,  

n = 9 ChR2-Cre+ mice 
 

Two-way 
ANOVA 

Group: 
F(1,15)=0.3553 
Laser: 
F(1,15)=16.23 
Interaction: 
F(1,15)=0.103 

 
p=0.5600 
 
p=0.0011 
 
p=0.7527 

Bonferroni  Laser Off  
Laser On 

p=0.999 
p=0.999 

H; Time in stimulation side 
during real time place 
preference 

n = 8 ChR2-Cre- mice,  
n = 10 ChR2-Cre+ 

mice 

Two sample 
unpaired t-
test 

t16=0.9711 p=0.3459 

J; Movement  n = 4 ChR2-Cre- mice, 
n = 4 ChR2-Cre+ mice 

Two sample 
unpaired t-
test 

t6=0.240 p=0.8185 

K; Pupil size n = 4 ChR2-Cre- mice, 
n = 4 ChR2-Cre+ mice 

Two sample 
unpaired t-
test 

t6=2.616 p=0.0398 

L; Heart rate n = 4 ChR2-Cre- mice, 
n = 4 ChR2-Cre+ mice 

Two sample 
unpaired t-
test 

t6=2.928 p=0.0264 

N; Time in open arms n = 7 ChR2-Cre- mice,  
n = 6 ChR2-Cre+ mice 
 

Two-way 
ANOVA 

Group: 
F(1,11)=4.417 
Laser: 
F(1,11)=4.927 
Interaction: 
F(1,11)=23.12 

 
p=0.0594 
 
p=0.0484 
 
p=0.0005 

Bonferroni  Laser Off 
Laser On 

p=0.999 
p=0.0037 

P; Time in open arms n = 9 NpHR-Cre- 
mice,  
n = 6 NpHR-Cre+ 

mice 
 

Two-way 
ANOVA 

Group: 
F(1,13)=3.455 
Laser: 
F(1,13)=5.845 
Interaction: 
F(1,13)=5.667 

 
p=0.0859 
 
p=0.0310 
 
p=0.0333 

Bonferroni  Laser Off 
Laser On 

p=0.999 
p=0.0113 

Figure 5   
B; GABAzine block n = 4 Pnoc+ neurons  Paired t-test t3=4.83 p=0.0064 
Figure S2   
D; Correlation between 
Ca2+ activity and velocity 
when mice were exposed 
to the TMT swab 
(responses defined by 

n = 397 Pnoc+ 
neurons 

Mann-
Whitney U 
test, 
significance 
level 
adjusted 

Excited vs No 
Change: 
U=8790.0 
Inhibited vs No 
Change: 
U=7438.0 

 
 
p=0.0013 
 
 
p=0.9216 



 
 
  

exposure to the TMT 
swab) 
 

using 
Bonferroni 
correction 

E; Correlation between 
Ca2+ activity and velocity 
when mice were exposed 
to the control Swab 
(responses defined by 
exposure to the TMT 
swab) 

n = 397 Pnoc+ 
neurons 

Mann-
Whitney U 
test, 
significance 
level 
adjusted 
using 
Bonferroni 
correction 

Excited vs No 
Change: 
U=101550.0 
Inhibited vs No 
Change: 
U=7818.0 

 
 
p=0.6720 
 
 
p=2.0868 

F; Correlation between 
Ca2+ activity and velocity 
when mice were exposed 
to the peanut swab 
(responses defined by 
exposure to the peanut 
swab) 

n = 780 Pnoc+ 
neurons 

Mann-
Whitney U 
test, 
significance 
level 
adjusted 
using 
Bonferroni 
correction 

Excited vs No 
Change: 
U=28737.0 
Inhibited vs No 
Change: 
U=995.0 

 
 
p=8.4642e-46 
 
 
p=1.1500e-7 

Figure S3   
B; Time in Center n = 8 ChR2-Cre- mice,  

n = 10 ChR2-Cre+ 

mice 
 

Two-way 
ANOVA 

Group: 
F(1,16)=2.44 
Laser: 
F(1,16)=0.06083 
Interaction: 
F(1,16)=9.761 

 
p=0.1378 
 
p=0.8083 
 
p=0.0065 

Bonferroni  Laser Off  
Laser On 

p=0.9999 
p=0.0281 

C; Time freezing n = 9 ChR2-Cre- mice,  
n = 8 ChR2-Cre+ mice 

Two-way 
ANOVA 

Group: 
F(1,15)=2.123 
Laser: 
F(1,15)=1.817 
Interaction: 
F(1,15)=0.103 

 
p=0.1658 
 
p=0.1977 
 
p=0.7527 

Bonferroni  Laser Off  
Laser On 

p=0.4172 
p=0.2962 



 
Figure S1, Extracting activity dynamics from PnocBNST neurons. Related to Figure 2. (A-E) 
Analysis pipeline of calcium imaging data using constrained nonnegative matrix factorization 
(CNMF) for extracting single-cell fluorescence signals from imaging data. 
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Figure S2, Correlations between velocity and neural activity of PnocBNST neurons. Related 
to Figure 2.  (A) Heat map of individual data (top) and average group data (bottom) for velocity 
responses to the control and TMT swabs. (B) Heat map of individual data (top) and average group 
data (bottom) for velocity responses to the control and peanut swabs. (C) Top: Proportion of 
excitatory and inhibitory responsive cells when the TMT swab was in the Near position (compared 
to Far position). Bottom: Proportion of excitatory and inhibitory responsive cells when the peanut 
swab was in the Near position (compared to Far position). Same as Figure 3G. (D) Correlation 
between Ca2+ activity dynamics of single PnocBNST neurons and velocity when mice were exposed 
to the TMT swab (n=397 neurons). (E) Correlation between Ca2+ activity dynamics of single 
PnocBNST neurons and velocity when mice were exposed to the control swab (excited and inhibited 
as defined by their response to the TMT swab, n=397 neurons). (F) Correlation between Ca2+ 
activity dynamics of single PnocBNST neurons and velocity when mice were exposed to the peanut 
swab (n=780 neurons). (G) Individual traces for pupil size, velocity and Ca2+ activity from single 
neuron responses from two representative mice that were exposed to either TMT (left) or peanut 
(right) swabs. Data shown as mean ± SEM. **p<0.01, ****p<0.0001. For a description of statistical 
analysis and results shown in this figure please refer to Table S1. 
  



 
Figure S3, Photoactivation of PnocBNST neurons increases anxiety-like behavior in an open 
field test. Related to Figure 2. (A) Sample heat map illustrating the location of a mouse during 
photoactivation of PnocBNST neurons during an open field test (OFT). (B) Group average for time 
spent in center of the OFT with photoactivation of PnocBNST neurons (n=8-10 per group). (C) Group 
average for time spent freezing with photoactivation of PnocBNST neurons (n=8-9 per group). Data 
shown as mean ± SEM. *p<0.05. For a description of all statistical analysis and results shown in 
this figure please refer to Table S1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S4, Genetic clustering of cell types across BNST neurons. Related to Figure 6. (A) 
Schematic of tissue isolated from BNST (n=2492 cells, n=24 mice). (B) Relative log expression 
normalization across cells and (C) mean gene expression correlations across batches following 
parametric batch correction. (D) Percent mitochondrial reads distribution across clusters. (E) 
Fraction of significant genes marking each cluster as determined using a likelihood-ratio test for 
single-cell data. (F) Individual cells plotted by the number of unique genes and unique transcripts 
detected. (Median = 1435 unique genes, 2257 unique transcripts). (G) Gene mean expression 
across all cell clusters. The 11 neuronal clusters are highlighted. (H) Distribution of all cells across 
clusters. (I) Heat map depicting expression of candidate marker genes for each neuronal cluster. 
(J) Expression of Vgat and Vglut2 across all neuronal clusters. Color represents normalized gene 
expression level. Size corresponds to proportion of neurons that expressed the gene. 
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