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SUMMARY

Natural and drug rewards increase the motiva-
tional valence of stimuli in the environment that,
through Pavlovian learning mechanisms, become
conditioned stimuli that directly motivate behavior
in the absence of the original unconditioned stim-
ulus. While the hippocampus has received extensive
attention for its role in learning and memory pro-
cesses, less is known regarding its role in drug-
reward associations. We used in vivo Ca2+ imaging
in freely movingmice during the formation of nicotine
preference behavior to examine the role of the
dorsal-CA1 region of the hippocampus in encoding
contextual reward-seeking behavior. We show the
development of specific neuronal ensembles whose
activity encodes nicotine-reward contextual mem-
ories and that are necessary for the expression of
place preference. Our findings increase our under-
standing of CA1 hippocampal function in general
and as it relates to reward processing by identifying
a critical role for CA1 neuronal ensembles in nicotine
place preference.

INTRODUCTION

Nicotine use through tobacco is the leading cause of preventable

death in the United States (Lerman et al., 2014). Learned associ-

ations between environmental cues and the rewarding proper-

ties of nicotine are a major cause for the persistence of nicotine

use and relapse among abstinent users (Lazev et al., 1999; De

Biasi and Dani, 2011). Maladaptive memories between drug-

reward and contextual cues experienced during drug use are

powerful and are a major cause of craving and relapse (Picciotto

and Kenny, 2013; Fowler et al., 2011). Studying the contexts in

which reward has been experienced is paramount to under-

standing the basic neurobiology of learning, aswell as howdrugs

such as nicotine ‘‘hijack’’ endogenous learning circuits to form

long-lastingmaladaptive changes that promote the risk of addic-

tion (Napier et al., 2013; Dong and Nestler, 2014; Everitt and

Robbins, 2016; Astur et al., 2016).

Although the hippocampus has been widely examined for its

role in learning and memory processes, including the encoding

of the memory for spatial locations (Tsien et al., 1996; Brous-

sard et al., 2016), its role in coding contextually salient informa-

tion specifically associated with reward and reward seeking

behaviors has received much less attention. Place cells in the

dorsal-CA1 region of the hippocampus are well known for their

role in the cognitive representation of specific locations in space

(Eichenbaum et al., 1999; Brun et al., 2002; Leutgeb et al.,

2005). Reports have suggested a potential deficit in contextual

associations resulting from dorsal-CA1 manipulations (Trouche

et al., 2016; Meyers et al., 2003, 2006; Ito et al., 2008). Recent

findings implicate an increase in hippocampal/nucleus accum-

bens activity that occurs after cocaine-CPP (conditioned place

preference) expression due to strengthening of place cell activ-

ity during conditioning (Sjulson et al., 2017). These studies

suggest that the CA1 region is an essential component of a

neural circuit that mediates the formation of reward-associated

contextual representations, yet direct evidence of CA1 activity

in nicotine reward-context associations is absent as is visual-

ization of neuronal ensemble recruitment over time in freely

moving mice during Pavlovian conditioning and preference

behavior.

Here, we determined that CA1 neuronal activity is necessary

for both the acquisition and expression of nicotine-reward

contextual associations. To dissect the specific changes in

dorsal-CA1 hippocampal activity dynamics that occur during

the acquisition and expression of these nicotine reward-contex-

tual associations, we used in vivo real-time Ca2+ imaging of

CA1 pyramidal neurons expressing GCaMP6f during nicotine

CPP in freely moving mice. We determined the role of dor-

sal-CA1 neuronal activity during nicotine CPP expression in

response to the contextual information associated with the

nicotine-reward as opposed to involvement in the subsequent

instrumental or goal-seeking component of reward-memory re-

activation (Everitt and Robbins, 2016; Astur et al., 2016). These

data demonstrate that CA1 neurons differentiate into ensembles

associated with the transition into a reward-paired contextual

memory and provide evidence that nicotine engages unique
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CA1 neuronal ensembles to integrate highly salient reward infor-

mation within spatial environments.

RESULTS

Chemogenetic Silencing of Dorsal-CA1 Neurons Blocks
Nicotine-CPP Acquisition and Expression
We first determined whether CA1 neuronal activity is necessary

for the acquisition and expression of nicotine-contextual asso-

ciations. We used a chemogenetic approach combined with

the classical Pavlovian model of CPP, commonly used to

assess the rewarding properties of abused drugs. The CPP

model has high utility and throughput for examining the under-

lying neural circuitry involved in the formation of drug-associ-

ated contextual memories (Tzschentke, 2007; Subramaniyan

and Dani, 2015; Bruchas et al., 2011). During nicotine CPP

training, mice injected with AAV5-CaMKIIa-hM4D(Gi)-mCitrine

designer receptors exclusively activated by designer drugs

(DREADD) virus (hereafter referred to as ‘‘hM4D(Gi) mice’’)

(Roth, 2016; López et al., 2016) or AAV5-CaMKII-mCitrine

(hereafter referred to as ‘‘mCitrine control mice’’) into the dor-

sal-CA1 region of the hippocampus (Figures 1A–1C and S2F)

were administered the DREADD ligand clozapine-N-oxide

(CNO) (1 mg/kg, i.p.) 30 min prior to each 20-min nicotine-con-

ditioning session (Figure 1D) to silence activity of these cells

during conditioning. Silencing CA1 neurons prior to nicotine

conditioning significantly blocked the acquisition of a prefer-

ence for the nicotine context (Figure 1E). To confirm the lack

of an association with the nicotine-paired context, 24 hr later

we tested for nicotine-primed CPP (Biala and Budzynska,

2006) and found that hM4D(Gi) mice also had lower nicotine

primed CPP scores as compared to mCitrine control mice (Fig-

ure 1E). These data indicate that CA1 activity during nicotine

contextual conditioning is necessary for the formation of a nico-

tine-reward contextual association. Next, to determine whether

CA1 neuronal activity is also necessary for the expression of a

nicotine-contextual association, in a separate experiment, a

new group of hM4D(Gi) mice were administered CNO 30 min

prior to the test for CPP expression (20 min) (Figure 1I, day

24: post-test). Chemogenetic inhibition of CA1 neurons prior

to CPP post-test blocked the expression of nicotine CPP, es-

tablishing that CA1 activity is necessary for the expression of

the nicotine-contextual reward memory (Figure 1J). However,

when tested for CPP expression 24 hr later in the absence of

CNO, hM4D(Gi) mice still showed a preference for the nico-

tine-paired side in response to a nicotine-priming injection (Fig-

ure 1J). These data suggest that, although an association be-

tween nicotine reward experience and the nicotine-paired

context had been made, CA1 activity is also necessary for the

expression of this association (Figure 1J). In both experiments,

locomotor responses did not differ between groups during the

post-test, nicotine-prime test, or conditioning sessions (Figures

1F–1H, 1K, and 1L), suggesting that these effects of CNO were

not due to any aberrant effects on nicotine-induced activity or

the animals ability to move around and explore the chambers

during testing. Together, these data suggest that dorsal-CA1

activity is necessary for both the acquisition and expression

of a nicotine-reward contextual memory.

In Vivo Ca2+ Imaging of Dorsal-CA1 Hippocampal
Neuronal Activity during the Acquisition of Nicotine-
Conditioned Place Preference
Next, to dissect the specific changes in dorsal-CA1 hippo-

campal activity dynamics that occur during the acquisition and

expression of nicotine reward-contextual associations, we uti-

lized in vivo real-time Ca2+ imaging of pyramidal CA1 neurons

during nicotine CPP in freely movingmice (Figures 2A–2D, Movie

S1). A detachable mini-microscope was used to image fluo-

rescent Ca2+ signals (AAV5-CaMKIIa-GcAMP6f) in dorsal-CA1

neurons during the nicotine-CPP protocol described in Figure 1

(Figure 2E). On day 1 of behavioral testing (Figure 2E, Pre-test),

we imaged dorsal-CA1 Ca2+ activity during the pre-test in which

mice freely explored both chambers of the CPP apparatus. This

was followed by Ca2+ imaging during 2 days of conditioning in

which mice were injected with saline and confined to one side

of the apparatus for 20 min in the a.m. and at least 4 hr later

injected with nicotine (0.5 mg/kg, s.c.) and confined to the oppo-

site chamber for another 20-min imaging session. On day 4

(post-test), mice were again imaged while given free access to

explore the entire CPP apparatus for 20 min to test for

nicotine place preference as determined by the time they spent

in the drug-paired chamber post-test minus pre-test (Figures 2F

and S1D). The following three groups of control mice were used:

nicotine-paired/non-CPP-expressing mice (Figure S1A), saline-

only controls (Figure S1B), and nicotine-unpaired controls (Fig-

ure S1C). Since the rewarding effects of nicotine are subtle

and can produce both a preference and aversion depending

on individual variability between mice (Picciotto, 2003; Cunning-

ham et al., 2006; Brielmaier et al., 2008), we were able to image

and analyze data from three mice that did not develop a CPP for

the nicotine-paired context (nicotine-paired/non-CPP-express-

ing mice). These mice served as a valuable control group, which

would have been less likely with a highly rewarding drug, such as

cocaine. Saline-only controls were given saline in both a.m. and

p.m. conditioning sessions (Figure S1B), and nicotine-unpaired

controls received nicotine (p.m.) in both chambers on alternating

days (Figure S1C). This control group was used to account for

any potential nicotine-induced effects on Ca2+ activity unrelated

to the contextual association. Calcium transient data from each

behavioral session were processed to detect changes in activity

and to track all labeled neurons during CPP behavior, and,

importantly, analysis of all these data was performed blinded

to treatment group. By generating a spatial neuronal map of all

imaged neurons with their corresponding signal traces for each

CPP test and conditioning session, we demonstrate successful

tracking of over 90% of the total imaged neurons over the condi-

tioning from all mice (mean = 182 neurons per mouse in pre-test,

mean = 179 neurons per mouse in training sessions, mean = 179

neurons per mouse in post-test, n > 2,700 neurons total from n =

13 mice) (Table 1).

With the data collected during nicotine-conditioning sessions,

we defined neuronal ensembles based on whether they were

active during the saline (a.m.) or nicotine (p.m.)-conditioning ses-

sions (Figures 2I and S1H–S1K). Cells that responded during the

nicotine-session had significantly higher Ca2+ frequencies than

cells active during saline-conditioning sessions. Interestingly,

this effect was seen only in mice that subsequently expressed

2144 Cell Reports 19, 2143–2156, June 6, 2017



nicotine CPP (Figures 2F, 2J, and S1H, CPP-expressing mice).

As expected, saline control mice showed no preference for either

side of the conditioning apparatus (Figure 2F), and no significant

difference between Ca2+ transient frequency during a.m. and

p.m. conditioning sessions was observed (Figures 2K and S1I).

This effect was also absent in nicotine-paired mice that did not

express a preference for the nicotine context (non-CPP express-

ing, Figures S1D, S1J, and S1L) or the nicotine-unpaired control

group (Figures S1D, S1K, and S1M), indicating that the observed

effect was not solely due to nicotine-induced Ca2+ activity during

conditioning. Specifically, these data suggest that dorsal-CA1

pyramidal neurons are recruited during nicotine conditioning

A B C D

H

I J

E F G

K L

Figure 1. Chemogenetic Inhibition of Dorsal-CA1 Neurons Blocks Nicotine-CPP Acquisition and Expression

(A) Diagram of bilateral AAV5-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine DREADD viral injections into the dorsal-CA1 region of the hippocampus (top). Confocal

(103) image of AAV5-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine DREADD expression in CA1 (bottom). Scale bar, 250 mm.

(B and C) (B) Zoomed-in confocal (103) image of AAV5-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine DREADD expression (203 inset) and (C) AAV5-CaMKIIa-mCitrine

(control virus) expression in the CA1 (203 inset) mCitrine (green). See also Figure S2F.

(D) Timeline of behavioral testing for CPP acquisition experiment.

(E and F) Activation of hM4D(Gi) DREADDs (E) in the CA1 by CNO 30 min before each nicotine (p.m.)-conditioning session attenuates the acquisition of nicotine

CPP and nicotine-primed CPP (n = 9 mCitrine mice (controls), n = 13 hM4D(Gi) mice, two-way ANOVA, F(1,20) = 23.31, p < 0.05, Bonferroni post hoc post-test

(left two bars): *p < 0.01, prime (right two bars): ***p < 0.0001) and (F) without changing locomotor responses during post-testing (two-way ANOVA F(1,20) = 0.052,

p = 0.82).

(G) CNO before nicotine-conditioning sessions does not change locomotor responses to nicotine (two-way ANOVA, F(1,20) = 0.24, p = 0.63).

(H) Representative behavior tracks from hM4D(Gi) and control mice during CPP post-testing and nicotine prime test.

(I) Timeline of behavioral testing for CPP expression experiment.

(J and K) Activation of hM4D(Gi) DREADDs (J) in the CA1 by CNO 30 min before the CPP post-test blocks nicotine CPP expression but does not affect the

expression of nicotine-primed CPP 24 hr later (n = 11 mCitrine mice [controls], n = 12 hM4D(Gi) mice, two-way ANOVA, F(1,21) = 10.63, p = 0.004, Bonferroni post

hoc post-test [left two bars]: p = 0.02, prime [right two bars]: p = 0.44) and (K) without changing locomotor response to during testing (two-way ANOVA, F(1,21) =

3.26, p = 0.78).

(L) No difference in conditioning day locomotor behavior was seen between control and hM4D(Gi) mice used in the CPP expression experiment (two-way ANOVA,

F(1,21) = 0.012, p = 0.91). All data are presented as mean ± SEM.
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Figure 2. In Vivo Ca2+ Imaging of Dorsal-CA1 Hippocampal Neuronal Activity during the Acquisition of Nicotine-Conditioned Place

Preference

(A) Cartoon of virus injection (left) with 103 confocal image of AAV5-CaMKIIa-GCaMP6f expression in the CA1 HIP (middle) and cartoon of microendoscope on

top of confocal image of CA1 region with GRIN lens implant (right), GCaMP6f (green), and Nissl (blue).

(B) Raw in vivo epifluorescence image of AAV5-CaMKIIa-GCaMP6f expression in the CA1 taken with mini-scope from (A) during CPP behavior.

(C) Transformed image of (B) to show relative change in fluorescence (DF/F0). White arrows indicate cell bodies.

(legend continued on next page)
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(during the reward pairing) and have a higher frequency of ac-

tivity as compared with that from the saline-conditioning session

(non-reward pairing), indicating a role for nicotine reward-

induced neuronal activity within dorsal-CA1 in the acquisition

of contextual associations. We also found that the frequency of

Ca2+ activity during nicotine (p.m.)-conditioning sessions was

positively correlated to subsequent preference scores in nico-

tine-paired mice (CPP and non-CPP-expressing groups) but

not in saline control group or for any other control group during

their saline (a.m.)-conditioning session (Figures 2G and S1E–

S1G). This finding suggests that increases in nicotine-induced

Ca2+ activity in the dorsal-CA1 are related to the rewarding ef-

fects of nicotine in addition to subsequent nicotine-seeking

behaviors and contextual associations, since lower CPP scores

were associatedwith less Ca2+ activity during nicotine condition-

ing. Considering that Ca2+ transient intensity (DF/F0 amplitude)

may also reflect the total number of actual action potentials

(Betley et al., 2015; Theis et al., 2016), we used the intensity of

all events to develop an intensity distribution of Ca2+ transient

activity for each group of mice (Figures 2L–2M, S1N, and S1O).

The Ca2+ transient intensity was normalized to the maximum in-

tensity from each session and evenly divided into ten magni-

tudes ranging from 0 to 1. We then calculated the mean (and

SD) Ca2+ transient event intensity for each mouse. Events with

Ca2+ transient intensities greater than the mean (0.22 ± 0.14)

were defined as ‘‘high responding events.’’ In CPP-expressing

mice (Figure 2L), a significantly larger percentage of neurons

displayed high responding events during nicotine-conditioning

sessions, compared with the saline-paired conditioning session

(Figure 2L). In addition, we did not detect a significant shift in the

transient intensity distribution between a.m. and p.m. sessions in

any of the control groups (Figures 2M, S1N, and S1O). Together,

these data suggest that nicotine pairing impacts both the

frequency and intensity of dorsal-CA1 pyramidal neuron Ca2+

activity during nicotine conditioning, which corresponds to the

magnitude of the nicotine-reward experience as assayed here

via expression nicotine CPP behavior.

In Vivo Ca2+ Imaging of CA1 Hippocampal Neuronal
Activity during the Acquisition and Expression of an
Operant Reward Task
To investigate the specificity of dorsal-CA1 neural activity to

spatial representation of contextual-nicotine-reward associa-

tions, we also imaged Ca2+ transients in an operant reward-

learning task in mice confined to a single context with a cue

paired to the delivery of a natural reward. We imaged dorsal-

CA1 Ca2+ activity while mice were trained to nosepoke for a

sucrose reward via a lickometer (Figures 3A and 3B). By day 5

of fixed ratio 1 (FR1) training (day 37), all mice had learned that

an active nosepoke resulted in a sucrose reward and poked

the active nosepoke significantly more than during the first day

of training (day 33) (Figures 3C–3E). We then calculated the

Ca2+ event frequency (Figures 3G–3I) and intensity distribution

(Figures 3J–3L) for neurons before and after each active nose-

poke on the day before and after the FR1 task was learned.

We used a criteria of 3:1 active to inactive nosepokes to confirm

learning, as previously described (Haluk and Wickman, 2010).

No significant changes between Ca2+ transient activity before

nosepoke and after nosepoke were seen after the operant

task was acquired compared to the day before acquisition (Fig-

ures 3F–3L). Ca2+ activity did not change across the course of

operant training and did not correspond to the presentation of

the cue that signified a sucrose reward at any point during

(D) Photograph of mouse with mini-epifluorescence microscope for Ca2+ imaging during behavior.

(E) CPP behavioral testing/Ca2+ imaging timeline and cartoon of CPP apparatus. See also Figures S1A–S1C.

(F) Mice conditioned with nicotine (Nicotine-paired CPP-expressing mice) had significantly higher CPP scores (time spent in the nicotine-paired side during post-

test minus pre-test) than saline control mice (unpaired t test, n = 6 per group, t(10) = 3.72, p = 0.004). See also Figure S1D.

(G) Correlation between Ca2+ event frequency per cell during nicotine (p.m.)-conditioning sessions and subsequent CPP scores in nicotine-paired mice (CPP

expressing and non-CPP expressing, n = 8, Pearson’s correlation coefficient r = 0.74, p = 0.03). See also Figures S1E and S1G.

(H) Neuron map and pie chart indicating that >90% of imaged neurons were successfully tracked across all six behavior sessions (white cells). Blue cells indicate

neurons missed during the pre-test and red cells indicate neurons missed during the post-test (<5%).

(I) Representative Ca2+ temporal traces on corresponding neuronmaps from 30 s of activity recorded during a saline-paired (a.m.) (left) and nicotine-paired (p.m.)

(right) conditioning session. Purple traces represent neurons that only show Ca2+ activity during nicotine-paired sessions. Green traces indicate neurons that

show Ca2+ activity only during the saline-paired session. Corresponding neuronal egg map labels neurons based on whether they displayed Ca2+ activity during

the saline-paired session (green neurons), during the nicotine-paired session (purple neurons), or during both sessions (gray neurons). See also Figures S1H–S1K.

(J) In CPP-expressing mice, the frequency of Ca2+ activity (events/minute/cell) of neurons active during the nicotine-paired session is significantly greater than

during the saline-paired session (paired t test, n = 5 mice, t(4) = 9.21, p = 0.0008).

(K) Saline controls do not show a difference in Ca2+ frequency (events/minute/cell) between a.m. and p.m. conditioning sessions (paired t test, n = 4 mice, t(3) =

1.27, p = 0.29). See also Figures S1L–S1M.

(L) Normalized Ca2+ response intensity distribution for nicotine CPP-expressing mice showing the percentage of cells that have higher intensity in the nicotine-

paired side compared to the saline-paired side (n = 5 mice, paired t test, t(4) = 5.44, p = 0.01).

(M) Normalized Ca2+ response intensity distribution for saline control mice showing the percentage of cells have higher intensity in the p.m. side compared to the

a.m. side (n = 4 mice, paired t test, t(3) = 0.13, p = 0.90).

See also Figures S1N and S1O. Scale bars, 100 mm. Data are mean ± SEM *p < 0.05, **p < 0.01.

Table 1. Average Number of Dorsal CA1 Cells Imaged during

Each Behavioral CPP Testing Session

Group Pre-test

Nicotine

Conditioning Post-test

CPP expressing 211.6 (±87.45) 206.6 (±77.63) 206.8 (±75.79)

Saline-only 164.5 (±50.51) 158.1 (±49.12) 158.5 (±47.70)

Non-CPP

expressing

108.0 (±37.24) 108.1 (±37.28) 109.3 (±36.61)

Nicotine

unpaired

177.0(±11.66) 179.5 (±12.01) 180.5 (±10.71)
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training (Figure 3F). There were also no significant changes in

Ca2+ transient activity before and after the consumption of the

sucrose reward (Figures 3I and 3L). We selected groups of neu-

rons whose total Ca2+ activity increased during licking behavior,

nosepoke behavior, or both and found no significant difference

between the numbers of neurons in each group (Figure 3M).

Therefore, although some groups of neurons do respond selec-

tively to occurrences of these behaviors, there is no group of

neurons that consistently respond to the same event (Figures

3N–3P). These data further indicate the specificity of CA1

ensemble activity to contextual-reward associations and not

solely as responding to a reward presentation.

To further extend our Ca2+ imaging results and to determine

that these neurons do not play a role in the expression of an

operant learning, we trained CA1-injected hM4D(Gi) mice in

the same operant task (Figure S2A). In contrast to our reward-

context pairing results, when CNO was administered 30 min

prior to a previously learned FR1 operant training session (or

24 hr later during another training session in the absence of

CNO) the ability to perform the task was unaffected (Figure S2B).

Furthermore, in a separate group of CA1-hM4D(Gi) mice, CNO

did not affect the ability to learn when the operant schedule

was changed from FR1 to fixed ratio 3 (FR3), which requires

more effort (Figures S2C–S2E). Together these results impor-

tantly suggest that specific dorsal-CA1 neuronal ensembles

like those recruited during CPP are not likely recruited during

the development non-contextual reward pairingswe tested here.

Visualization of Dorsal-CA1 Hippocampal Neuronal
Activity during the Expression of Nicotine CPP
To further examine the role of CA1 neurons in nicotine CPP, we

analyzed Ca2+ activity from all cells in relation to the spatial loca-

tion in which they responded, to determine a role, if any, for CA1

place cells in encoding a nicotine-contextual reward association

(Figures 4A–4D). Due to the increased time spent in the nicotine

side (Figure 2F), CPP-expressing mice had a higher total neural

activity in nicotine-paired side in post-test (Figure 2J). In order

to examine the linearity/non-linearity association between time

spent in a particular region and total Ca2+ activity in this region,

we calculated the accumulated time and accumulated Ca2+ ac-

tivity in each 3 3 3-cm2 square region for each side in both pre-

test and post-test (Figures 4E and 4F). A 2-degree polynomial

regression curve was fitted for each group of data. We found

that CPP-expressing mice had the most linear-like association

between time and activity in the nicotine-paired side during the

post-test and had the highest Pearson correlation (Table 2).

This result suggests that, in CPP-expressing mice, there is a

large association between time spent in a particular region in

the nicotine-paired side during the post-test and implies an

enhanced time and field logged place cell activity during the

post-test. Consistent with previous imaging studies (Ziv et al.,

2013), we found that about 20% of the CA1 neurons we imaged

could be classified as place cells (Figures 4H and 4I). These were

cells whose 80% response was associated with one specific

location (25 cm2) within the CPP chamber. Our results were

also consistent with Ziv et al. (2013) in which a large percentage

of neurons were found not to overlap when comparing the place

code ensembles from two sessions when a mouse is placed in a

familiar arena. By examining all place cells and their mapped

field during the pre-test and post-test, we also found that

some place cells mapped to a different side in post-test after

training instead of maintain responding for the same spatial loca-

tion in the same side during pre-test (Figure 4H), while some

place cells remain responding to the same side (Figure 4I). How-

ever, we show that CPP-expressing mice displayed a signifi-

cantly higher percentage of place cells that changed map fields

andmapped onto the nicotine-paired side than any other control

group (Figure 4G).

Next, to isolate the dynamic role of dorsal-CA1 nicotine

reward-paired ensemble activity during the expression of a

nicotine-CPP, we compared Ca2+ transient activity imaged prior

to conditioning, during the drug-free pre-test (Figure 5A:

Pre-test, day 1) to Ca2+ activity after nicotine conditioning, dur-

ing the drug-free preference test (Figure 5A: Post-test, day 4).

We analyzed Ca2+ activity for each neuron as the mouse freely

explored the CPP chambers according to whether activity

occurred during one of two transition events defined by the di-

rection of the mouse’s movement and location during nicotine

CPP expression (Figure 5A; Movie S2). The two transition events

were defined as either ‘‘nicotine-paired transitions’’ (occurring

Figure 3. In Vivo Ca2+ Imaging of CA1 Hippocampal Neuronal Activity during the Acquisition and Expression of an Operant Reward Task

(A) Timeline of imaging and fixed ratio 1 (FR1) schedule of operant lickometer training and illustration of mouse in operant chamber.

(B) Representative neuron map and temporal traces for ten neurons during a 1-hr FR1 training session. Corresponding colors represent neurons and traces.

(C) Representative behavior from one mouse during the first day of FR1 training (day 33). No difference is seen between the number of active and inactive

nosepokes during the first training session.

(D and E) By day 37 (FR1 training day 5), mice poke the active nosepoke significantly more than the inactive nosepoke (D) and this difference is significant (E).

(F) Representative raster and histogram showing licking behavior aligned with Ca2+ events during the 5 s before and 20 s after each cue presentation.

(G–I) Neurons are distributed into a two-dimensional field. The x axis shows Ca2+ event frequency after each active nosepoke and the y axis shows Ca2+ event

frequency before each active nosepoke before the FR1 criteria was met (G), after the FR1 criteria was met (H), or reward (I).

(J–L) Normalized Ca2+ response intensity distribution before and after each active nosepoke, before FR1 criteria met (day 33) (J) and after (day 37) (K) and before

and after a reward (L).

(M) Cellular spatial map and corresponding bar graph categorizing neurons based on whether they displayed Ca2+ activity for more than 20% of the total Ca2+

activity of that neuron time locked to one of two actions: an active nosepoke (blue) or during the first sucrose lick following sucrose delivery (green). Pink rep-

resents neurons that were active during both actions. Bar graph shows the number of neurons (%) in each group. No statistically significant differenceswere seen.

(N) Normalized Ca2+ activity raster showing Ca2+ activity for neurons active during both behaviors (M, pink neurons), during each active nosepoke (top), and

during the first lick after sucrose delivery (bottom). See also Figures S2A–S2E.

(O) Normalized Ca2+ activity raster plot showing Ca2+ activity for neurons active during each active nosepoke (M, blue neurons).

(P) Normalized Ca2+ activity raster plot showing Ca2+ activity for neurons active during the first lick after sucrose delivery (M, green neurons). Note: there is a brief

period of inhibition in this group just before the onset of the first lick. All traces are mean with SD.
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Figure 4. Total Ca2+ Activity of All Imaged CA1 Cells Mapped onto Spatial Locations within the CPP Apparatus Together with ‘‘Place Cell’’

Analysis

(A–D) Gaussian-smoothed (s = 3.5 cm) heatmaps represent the total normalizedCa2+ transient activity (corrected by time on each pixel) for all cells corresponding

to the location of the mouse within the CPP chamber during the pre-test and post-test in (A) CPP-expressing mice, (B) saline controls, (C) non-CPP expressing,

and (D) nicotine unpaired control mice.

(legend continued on next page)
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30 s before and after themouse entered the nicotine-paired side)

or ‘‘saline-paired transitions’’ (occurring 30 s before and after the

mouse entered the saline-paired side). We then determined

whether Ca2+ transient frequency was differentially modulated

during each transition over the course of the pre-and post-tests.

Thus, for each imaged mouse, we calculated the change in fre-

quency as the frequency of Ca2+ transients occurring during

nicotine-paired transitions minus the frequency of Ca2+ tran-

sients occurring during saline-paired transitions for both the

pre-and post-tests. Interestingly, we found that, during the

post-test, the change in frequency of Ca2+ activity was larger

in CPP-expressing mice than the activity of the same population

of neurons during the pre-test (Figure 5B).We further defined two

subcategories of neurons based on their transition-dependent

changes in Ca2+ transient frequency (Figures 5F, 5G, and S3A–

S3C). A larger number of neurons with higher changes in Ca2+

event frequency occurred during nicotine-paired transitions

compared to those same neuron’s Ca2+ activity during the pre-

test (Figures 5F and 5G). In contrast, no differences in the change

in Ca2+ frequency were observed in groups of control mice from

pre-test to post-test (Figures 5C–5E). During the pre-test, there

was a relatively equal number of neurons responding during tran-

sitions from either side (Figures 5H–5M). However, during the

post-test in CPP-expressing mice, a larger number of neurons

that were recruited with higher activity during nicotine-paired

transitions compared to saline-paired transitions (Figures 5H–

5M). No significant difference in the number of neurons recruited

during either transition event was observed in the control groups

(Figures 5I–5K). In CPP-expressing mice, this same ensemble of

nicotine-paired transition neurons showed a marked increase in

activity upon entry into the nicotine-paired side (Figure 5N) that

then decreased during the transition into the saline-paired side

(Figure 5O). Furthermore, when examining the total population

of neurons in CPP-expressing mice, the Ca2+ transient response

during nicotine-paired transitions was increased (Figure S3D),

while all other control groups did not show any change in total

Ca2+ events during side transitions (Figures S3E–S3G). Addition-

ally, we found that only in CPP-expressing mice more neurons

displayed higher intensity Ca2+ responses in the nicotine-paired

side compared to the saline-paired side during the post-test

(Figure S4A, right panel), whereas no changes were found in

Ca2+ intensity during the pre-test (Figure S4A, left panel) or in

any of the control groups during either their pre-or post-tests

(Figures S4B–S4D).

Using a complementary approach to thoroughly examine the

formation of nicotine-dependent ensembles over time, a vector

analysis was applied to these data, and the similarity measure

(the angle between vectors) was calculated (Bartho et al.,

2009; Schoenbaum and Eichenbaum, 1995). The angle between

nicotine-side to saline-side transition events for nicotine-paired

neurons during the post-test was significantly larger compared

to the angle observed between saline-side to nicotine-side tran-

sition events (Figures S4E and S4F). In control mice (saline

controls, CPP non-expressing, and nicotine-unpaired), the vec-

tor of all neurons during these transition events was calculated,

and no significant bi-directional difference between events was

observed (Figures S4G–S4I). These data demonstrate that CA1

neurons differentiate into ensembles associated with the transi-

tion into a reward-paired context.

DISCUSSION

We report that dorsal CA1 neuronal activity is necessary for both

acquisition and expression of a nicotine CPP but is not neces-

sarily required for learning simple operant-based reward tasks

(sucrose self-administration). Furthermore, these responses

are robustly retained because, in a subsequent nicotine-primed

CPP reinstatement test, in the drug-paired context in the

absence of silencing, mice can only reattribute a drug-paired

context to express a CPP when the silencing occurred after

the acquisition of the association. These results are similar to

that observed by Trouche et al. (2016) in which mice no longer

showed a CPP for a cocaine prime after photo-inhibition of

dorsal CA1 neurons previously activated in the cocaine-paired

context. Here, we extended these findings using in vivo Ca2+

imaging in freely moving mice during nicotine CPP to visualize

the real-time patterns of neuronal activity associated with nico-

tine preference and have identified a critical role for recruitment

of dorsal-CA1 ensembles in nicotine-contextual associations.

We report that dorsal-CA1 Ca2+ transient activity is tightly locked

to subsequent nicotine-reward seeking behavior (Figure 5) and is

increased when an animal encounters related contextual cues.

This may be the result of recall of the reward-context association

(E and F) Accumulated Ca2+ activity is plotted versus accumulated times for each 3-cm2 region in each side of CPP chamber for all mice by different colors in CPP-

expressing group (E) and saline group (F). Data from CPP-expressing mice in nicotine side during posttest (purple) are fitted with a linear polynomial regression

curve with corresponding color.

(G) Average percentage of place cells remapped from pre-test to post-test (25 cm2). CPP-expressing mice had a higher percentage of consistent place cells

(with saline controls: paired t test, t(5) = 6.871, p = 0.0010; with non-CPP-expressing: paired t test, t(5) = 6.165, p = 0.0016; with nicotine-unpaired: paired t test,

t(5) = 6.224, p = 0.0016).

(H) Place cell analysis showed that of the cells that responded to a specific location in the saline-paired side during the pre-test in Gaussian-smoothed (s= 3.5 cm)

density maps were remapped after conditioning to encode a different spatial location in nicotine-paired side during post-test (representative cells 1–4). Red dots

mark its position during Ca2+ events.

(I) Some cells maintained place cell activity of their location during the pre-test across all testing sessions (representative cells 5–8). Scale bars, 10 cm.

Table 2. Pearson Correlation Coefficients between Ca2+ Activity

and Time Spent in the Nicotine-Paired Side during the Post-test

CPP

Expressing

Saline

Only

Non-CPP

Expressing

Nicotine-

Unpaired

Pre-test

Nic/a.m. side 0.829 0.873 0.874 0.735

Sal/p.m. side 0.859 0.924 0.869 0.774

Post-test

Nic/a.m. side 0.904 0.762 0.792 0.774

Sal/p.m. side 0.752 0.774 0.647 0.717
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Figure 5. In Vivo Ca2+ Imaging of Dorsal-CA1 Hippocampal Neuronal Activity during the Expression of Nicotine-Conditioned Place

Preference

(A) Timeline of CPP behavior and cartoon of CPP apparatus with arrows representing side transitions during the pre-test and post-test (day 1 and day 4). Purple

arrows represent nicotine-paired transitions from the saline-paired side to the nicotine-paired side (30 s before and after the mouse enters the nicotine-paired

side). Green arrows represent saline-paired transitions from the nicotine-paired side to saline-paired side (30 s before and after the mouse enters the saline-

paired side).

(legend continued on next page)
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or being in a context that has been previously associated with

reward. We also found that this increased Ca2+ activity is

more selective to Pavlovian reward-based contextual tasks as

compared to specific operant-based reward. This difference be-

tween CA1 neuron activity during the operant task as compared

to CPP training is likely due to the non-hippocampal-dependent

nature of the operant task; however, other tasks andmeasures of

operant responding and the CA1 are warranted in future studies.

It is also plausible that any differences we see in CA1 activity

could be due to the lack of a drug reward in the operant task,

or in the differences between the contingent and non-contingent

reward delivery. Nevertheless, these results suggest that dorsal-

CA1 ensembles specifically encode nicotine-associated spatial

cues related to contextual information. We report here that

specific neuronal ensembles within the CA1 are recruited by

nicotine-reward contextual pairings and that their activity is

necessary for the expression of this behavior, suggesting that

nicotine engages and potentiates CA1 activity to inform subse-

quent cued contextual behaviors.

By employing in vivo calcium imaging approaches with mini-

scopes and gradient refractive index (GRIN) lens implants in

non-head-fixed freely moving mice, we demonstrated success-

ful tracking of over 90%of dorsal CA1 hippocampal neurons dur-

ing six independent behavioral testing sessions. Computational

work using a modified principal component analysis (PCA)/ICA

(independent component analysis) (Mukamel et al., 2009; Ziv

et al., 2013) with motion correction was reliable in our case due

to the high number of GCaMP+ cells we could record in each ses-

sion (100–300) and the reliable single-photon resolution we ob-

tained in most of our GRIN lens implanted mice. This newer

methodology allowed us to define and record discrete neuronal

ensembles during a complex behavioral assay such as nicotine

place preference. The nicotine place preference behavioral

approach is notoriously difficult, let alone with in vivo extracel-

lular recordings, and thus information about how contextual

cue and neuronal ensemble codes within the hippocampus are

generated by nicotine pairings have been previously limited

(De Biasi and Dani, 2011; Penton et al., 2011). Here, we show

that mice tolerate the mini-scope well throughout conditioned

place preference, as well as an operant-based behavioral task,

and that one can stably record Ca2+ transient activity over the

course of these types of more complex learned behaviors. This

technical feat came with significant challenges and still has its

certain limitations. For one, tracking neurons reliably over the

course of six independent training sessions while measuring

their Ca2+ transient activity proved difficult; however, by using

the same microscope for each individual animal and maintaining

focusing specs (Resendez et al., 2016), we could obtain high-

resolution maps of each neuron’s activity in space facilitating

robust detection of Ca2+ transients in each behavioral training

session (Movies S1 and S2). This methodology also allowed us

to visualize the developing potentiation of ensemble activity

within dorsal CA1 as the nicotine CPP behavior transitioned

from no initial preference (Figure 2) all the way toward the

expression of a place preference in each individual animal (Fig-

ure 5). Furthermore, we examined dorsal CA1 neuronal ensem-

bles in several control groups, including saline-saline (a.m. and

p.m. pairings), nicotine-nicotine, and in saline-nicotine-paired

animals that failed to show a nicotine place preference. These

experiments definitively reveal specificity of a nicotine-paired

CA1 ensemble that predicts and is active during CPP expres-

sion. A question remains regarding how stable these recruited

ensembles within the dorsal CA1 are following expression of a

nicotine CPP. Given that we can challenge a mouse with a prim-

ing dose of nicotine (Figure 1), after having silenced CA1 neurons

during CPP expression, and then reactivate this expression of a

nicotine preference suggests that potentiated CA1 neuronal

ensembles due to the nicotine pairing are indeed retained in

subsequent trials. However, this hypothesis will require further

examination with additional imaging cohorts.

CPP is a widely used behavioral measure that models the

rewarding effects of drugs and contextual stimuli that occur in

nicotine addicts (Astur et al., 2016; Napier et al., 2013). The

data presented here together with previous findings have impli-

cated hippocampal glutamatergic transmission in drugs of

abuse that induce place preference (Portugal et al., 2014;

(B) CPP-expressing mice show a significantly larger change in frequency of Ca2+ activity (events/minute/cell) during nicotine-paired transitions during the post-

test than was seen prior to conditioning during the pre-test (paired t test, n = 5 mice, t(4) = 2.84, p = 0.04).

(C–E) The frequency of Ca2+ activity did not change during saline-paired or nicotine-paired transition events in (C) saline control mice (n = 4 mice, paired t test

t(3) = 0.56, p = 0.62), (D) non-CPP-expressing mice (n = 3 mice, paired t test t(2) = 0.15, p = 0.89), or (E) nicotine-unpaired mice (n = 3mice, paired t test t(2) = 0.148,

p = 0.89).

(F and G) Neurons (n = 1,313 neurons, fivemice) activated during nicotine-paired and saline-paired transitions the (F) pre-test and (G) post-test displayed in a two-

dimensional field where the x axis represents the change in Ca2+ frequency during nicotine-paired transitions and the y axis represents the change in Ca2+

frequency during saline-paired transitions. Purple points represent neurons with a higher frequency of Ca2+ transients (events/min/cell) during nicotine-paired

transitions. Green points represent neurons with a higher frequency of Ca2+ transients during saline-paired transitions. See also Figures S3A–S3C.

(H) CPP-expressing mice have significantly more nicotine-paired neurons than saline-paired neurons (n = 5 mice, paired t test, t(4) = 5.32, p = 0.006).

(I–K) Control groups show no difference in the number of neurons paired with either transition context: (I) saline controls (n = 4, paired t test, t(3) = 0.05, p = 0.97),

(J) non-CPP-expressing mice (n = 3, paired t test, t(2) = 0.26, p = 0.83), and (K) nicotine-unpaired controls (n = 3, paired t test, t(2) = 0.55, p = 0.64).

(L) Representative locomotor track from a nicotine CPP-expressing mouse during the CPP post-test and corresponding traces from neurons with higher Ca2+

activity during nicotine-paired transitions (purple traces) and neurons with higher activity during saline-paired transitions (green traces) displayed on egg maps.

(M) Left panel: representative neuron egg map from the pre-test showing neurons with higher frequencies of Ca2+ transients during either nicotine-paired (purple)

or saline-paired (green) transitions. Right panel: representative neuron egg map from a nicotine CPP-expressing mouse during the post-test (i.e., during CPP

expression). More neurons have higher frequencies of Ca2+ transients during nicotine-paired transitions than during saline-paired transitions (n = 701 nicotine-

paired neurons [purple] and 419 saline-paired [green] neurons).

(N and O) Raster represents total Ca2+ responses in CPP-expressing mice during nicotine-paired transitions (N) and during saline-paired transitions during the

post-test (O). Each row represents one transition (top). Red line indicates actual time of side entry. The corresponding aligned trace represents the total

normalized Ca2+ activity during each transition. See also Figures S3A–S3G and 4A–4E.
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Bossert et al., 2011; Zarrindast et al., 2007; LaLumiere and Kali-

vas, 2008; Zhou and Kalivas, 2008; Knackstedt and Kalivas,

2009; Xia et al., 2011). However, our results suggest that dorsal

CA1-specific ensembles are crucial for the formation andmainte-

nance of context-dependent associative behaviors. These data

further support that the nicotine-context potentiatedCA1 ensem-

bles are engaged only during the pairing of salient reward stimuli

with specific contextual information and are likely due to the oper-

ant task being non-hippocampal dependent. Furthermore, while

several studies have implicated CA1 neurons in coding place in-

formation (Eichenbaum et al., 1999; Brun et al., 2002; Leutgeb

et al., 2005; Hok et al., 2007), there are no previous reports that

have visualized a recruitment of new ensembles by drug-context

pairings during the development (training) of the actual Pavlovian

behavior.While there is an established role for dorsal CA1 in place

coding, our results here show that the activity of these neurons is

further modulated by drug reward when they are paired with

discrete contexts or goal oriented behaviors as previously shown

(Hollup et al., 2001; Dupret et al., 2010). Our data suggest that the

drug-reward (nicotine in this case) pairing acts to engage the CA1

populations in a unique manner such that their activity is gated

during both the training and CPP expression.

Taken together, our data provide unique evidence for a key

role of the dorsal-CA1 hippocampus in nicotine reward-contex-

tual associations and establish a relationship between nicotine

preference behavior and neuronal network activity of the dorsal

CA1 of hippocampus. The development and increase in activity

of neuronal ensembles during the acquisition of contextual

memories is a probable mechanism involved with organizing

the large number of associative memories acquired over the

course of an animal’s lifetime. Our results suggest a role for

increased CA1 ensemble activity in maladaptive reward-contex-

tual memories responsible for the persistence of drug seeking in

nicotine addiction. Here, we provide evidence for the learning

and memory hypothesis of addiction (Dong and Nestler, 2014;

Everitt and Robbins, 2016) by observing the dynamic neuronal

changes associated with normal learning and memory pro-

cesses during the critical developmental phases of nicotine-

contextual associations.

EXPERIMENTAL PROCEDURES

Animals

Male wild-type (WT) C57BL/6 mice maintained on a 12-hr-light/dark cycle

(lights on at 7 a.m.) were used for all experiments, which took place during

the light cycle. Mice had free access to food and water for CPP experiments

but were food restricted to 90% of their original body weight prior to operant

training. All mice weighed 25–35 g at the start of CPP behavioral testing (see

Supplemental Experimental Procedures). Viral injection stereotaxic surgery

was performed on 6-week-old mice to ensure appropriate age at the time of

CPP testing. Mice were housed three to five per cage until GRIN lens implan-

tation surgery after which mice (7–8 weeks old) were individually housed to

avoid damage to lens and head cap. Mice were maintained in a holding

room adjacent to the behavioral testing room. All procedures were approved

by the Animal Care and Use Committee of Washington University in St. Louis

and were in accordance with NIH standards.

Drug Administration

(–)–Nicotine hydrogen tartrate salt (Sigma, N5260) (0.5 mg/kg, corrected for

the weight of the tartrate salt) was suspended in saline and subcutaneously

(s.c.) administered. Clozapine N-oxide (CNO) (1 mg/kg i.p.) (Enzo Life Sci-

ences; BML-N5105-0025) was made in 0.5% DMSO in saline (Jennings

et al., 2015; Nygard et al., 2016).

In Vivo Ca2+ Imaging and Data Analysis

Ethovision behavior tracking software (Noldus) (used to record and analyze

CPP behavior) was programmed to simultaneously trigger the onset behav-

ioral tracking and the beginning of the imaging session (Ethovision was used

to ‘‘turn on’’ the mini-scope LED and camera so that behavior and Ca2+ imag-

ing sessions were recorded in sync). Using nVista acquisition software

(Inscopix), images were acquired at 20 frames per second. Ethovision was

also programed to send transistor-transistor logic (TTL) pulses (recorded in

nVista as general purpose input output [GPIO] files) that provided time stamps

corresponding to the location of the mouse in the CPP apparatus (Jennings

et al., 2015). Mosaic (Inscopix) was used to preprocess Ca2+ data from each

behavior/imaging session as previously described (Ziv et al., 2013; Resendez

et al., 2016; Jennings et al., 2015; Rubin et al., 2015). Briefly, data were de-

noised, and motion correction was applied. After preprocessing, single-

neuron activity was separated by PCA/ICA (Mukamel et al., 2009) in Mosaic

and sorted manually. Down-sampling data by two points in the temporal

dimension and six points in the spatial dimension resulted in one dataset for

single-neuron spatial filters and another dataset set for single-neuron time

courses. The time-course dataset was then processed with the spike detec-

tion algorithmbuilt-intoMosaic software. CustomMATLAB scripts were devel-

oped and used to further analyze these data.

Statistical Analysis

Statistically significant differenceswere determined at p < 0.05, using two-way

ANOVAs or paired t tests where appropriate. All statistical analysis was per-

formed using Graph Pad Prism v.7.
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Cocaine place conditioning strengthens location-specific hippocampal inputs

to the nucleus accumbens. bioRxiv.

Subramaniyan, M., and Dani, J.A. (2015). Dopaminergic and cholinergic

learning mechanisms in nicotine addiction. Ann. N Y Acad. Sci. 1349, 46–63.

Theis, L., Berens, P., Froudarakis, E., Reimer, J., Román Rosón, M., Baden, T.,

Euler, T., Tolias, A.S., and Bethge, M. (2016). Benchmarking Spike Rate Infer-

ence in Population Calcium Imaging. Neuron 90, 471–482.

Cell Reports 19, 2143–2156, June 6, 2017 2155

http://refhub.elsevier.com/S2211-1247(17)30704-0/sref3
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref3
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref3
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref4
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref4
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref4
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref5
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref5
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref5
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref6
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref6
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref6
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref7
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref7
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref7
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref7
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref8
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref8
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref8
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref8
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref9
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref9
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref9
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref10
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref10
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref11
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref11
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref12
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref12
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref13
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref13
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref13
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref14
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref14
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref14
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref15
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref15
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref16
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref16
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref16
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref17
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref17
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref17
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref18
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref18
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref18
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref19
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref19
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref19
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref20
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref20
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref20
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref20
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref21
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref21
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref21
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref21
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref22
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref22
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref23
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref23
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref24
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref24
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref24
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref25
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref25
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref25
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref26
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref26
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref26
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref27
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref27
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref27
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref27
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref28
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref28
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref28
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref29
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref29
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref29
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref29
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref30
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref30
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref30
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref31
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref31
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref31
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref32
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref32
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref32
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref32
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref33
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref33
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref33
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref34
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref34
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref35
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref35
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref35
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref36
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref36
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref36
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref36
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref38
http://dx.doi.org/10.7554/eLife.12247
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref40
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref40
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref40
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref41
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref41
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref41
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref42
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref42
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref43
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref43
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref43


Trouche, S., Perestenko, P.V., van de Ven, G.M., Bratley, C.T., McNamara,

C.G., Campo-Urriza, N., Black, S.L., Reijmers, L.G., and Dupret, D. (2016).

Recoding a cocaine-place memory engram to a neutral engram in the hippo-

campus. Nat. Neurosci. 19, 564–567.

Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996). The essential role of hippo-

campal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.

Cell 87, 1327–1338.

Tzschentke, T.M. (2007). Measuring reward with the conditioned place

preference (CPP) paradigm: Update of the last decade. Addict. Biol. 12,

227–462.

Xia, Y., Portugal, G.S., Fakira, A.K., Melyan, Z., Neve, R., Lee, H.T., Russo,

S.J., Liu, J., and Morón, J.A. (2011). Hippocampal GluA1-containing AMPA re-

ceptors mediate context-dependent sensitization to morphine. J. Neurosci.

31, 16279–16291.

Zarrindast, M.R., Lashgari, R., Rezayof, A., Motamedi, F., and Nazari-Seren-

jeh, F. (2007). NMDA receptors of dorsal hippocampus are involved in the

acquisition, but not in the expression of morphine-induced place preference.

Eur. J. Pharmacol. 568, 192–198.

Zhou, W., and Kalivas, P.W. (2008). N-acetylcysteine reduces extinction re-

sponding and induces enduring reductions in cue- and heroin-induced drug-

seeking. Biol. Psychiatry 63, 338–340.

Ziv, Y., Burns, L.D., Cocker, E.D., Hamel, E.O., Ghosh, K.K., Kitch, L.J., El

Gamal, A., and Schnitzer, M.J. (2013). Long-term dynamics of CA1 hippocam-

pal place codes. Nat. Neurosci. 16, 264–266.

2156 Cell Reports 19, 2143–2156, June 6, 2017

http://refhub.elsevier.com/S2211-1247(17)30704-0/sref44
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref44
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref44
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref44
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref45
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref45
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref45
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref46
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref46
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref46
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref48
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref48
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref48
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref48
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref49
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref49
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref49
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref50
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref50
http://refhub.elsevier.com/S2211-1247(17)30704-0/sref50

	Washington University School of Medicine
	Digital Commons@Becker
	2017

	Dorsal-CA1 hippocampal neuronal ensembles encode nicotine-reward contextual associations
	Li Xia
	Stephanie K. Nygard
	Gabe G. Sobczak
	Nicholas J. Hourguettes
	Michael R. Bruchas
	Recommended Citation


	Dorsal-CA1 Hippocampal Neuronal Ensembles Encode Nicotine-Reward Contextual Associations
	Introduction
	Results
	Chemogenetic Silencing of Dorsal-CA1 Neurons Blocks Nicotine-CPP Acquisition and Expression
	In Vivo Ca2+ Imaging of Dorsal-CA1 Hippocampal Neuronal Activity during the Acquisition of Nicotine-Conditioned Place Prefe ...
	In Vivo Ca2+ Imaging of CA1 Hippocampal Neuronal Activity during the Acquisition and Expression of an Operant Reward Task
	Visualization of Dorsal-CA1 Hippocampal Neuronal Activity during the Expression of Nicotine CPP

	Discussion
	Experimental Procedures
	Animals
	Drug Administration
	In Vivo Ca2+ Imaging and Data Analysis
	Statistical Analysis

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


