24 research outputs found

    The noise of many needles: Jerky domain wall propagation in PbZrO3 and LaAlO3

    Get PDF
    Measurements of the sample length of PbZrO3 and LaAlO3 under slowly increasing force (3-30 mN/min) yield a superposition of a continuous decrease interrupted by discontinuous drops. This strain intermittency is induced by the jerky movement of ferroelastic domain walls through avalanches near the depinning threshold. At temperatures close to the domain freezing regime, the distributions of the calculated squared drop velocity maxima N(υm2) follow a power law behaviour with exponents ε=1.6±0.2. This is in good agreement with the energy exponent ε=1.8±0.2 recently found for the movement of a single needle tip in LaAlO3 [R. J. Harrison and E. K. H. Salje, Appl. Phys. Lett. 97, 021907 (2010)]. With increasing temperature, N(υm2) changes from a power law at low temperatures to an exponential law at elevated temperatures, indicating that thermal fluctuations increasingly enable domain wall segments to unpin even when the driving force is smaller than the corresponding barrier

    Технологическое обеспечение радиохирургии метастазов в головном мозге

    Get PDF
    Расчёт поглощенных доз с помощью системы планирования для реализации стереотаксической лучевой терапии на базе линейного ускорителя, сравнение лечебных планов с разными режимами доставки дозыCalculation of the absorbed dose using the planning system for the implementation linear accelerator-based stereotactic radiation therapy, comparison of medical plans with different modes of delivery of the dos

    Green one-pot synthesis and processing of polyimide–silica hybrid materials

    No full text
    Inorganic–organic hybrid materials allow for combining features typical of the inorganic component with those of the organic component in one material. Generally, the preparation of organic and inorganic compounds requires considerably different synthesis conditions. Hence, the development of one-pot routes to inorganic–organic hybrid materials is challenging. We herein report a fully green one-pot synthesis of polyimide/silica (PI/SiO2) hybrids. Specifically, we co-condense both components hydrothermally, using nothing but the respective precursors and water. Furthermore, we show that the PI and the SiO2 component can be covalently connected under hydrothermal conditions, using the compatibilizer (3-aminopropyl)-triethoxysilane. We thoroughly investigate the effect of different reaction conditions, including temperature, pH, precursor concentration and reaction time on the morphology and crystallinity of the final materials. The polyimide component, poly(hexamethylene pyromellitimide) was chosen for its thermoplasticity, which allows for processing both the PI and the PI/SiO2via sintering. For being a solvent-free method, sintering qualifies as a green processing technique. This work is the first report of the simultaneous hydrothermal condensation of an inorganic and an organic material.publishe
    corecore