23 research outputs found

    The Protein Model Portal

    Get PDF
    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebas

    The evolution of drug-activated nuclear receptors: one ancestral gene diverged into two xenosensor genes in mammals

    Get PDF
    BACKGROUND: Drugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. In non-mammalian species, only one xenosensor gene has been found. Using chicken as a model organism, the aim of our study was to elucidate whether non-mammalian species only have one or two xenosensors like mammals. RESULTS: To explore the evolutionary aspect of this divergence, we tried to identify additional xenobiotic sensing nuclear receptors in chicken using various experimental approaches. However, none of those revealed novel candidates. Ablation of chicken xenobiotic receptor (CXR) function by RNAi or dominant-negative alleles drastically reduced drug-induction in a chicken hepatoma cell line. Subsequently, we functionally and structurally characterized CXR and compared our results to PXR and CAR. Despite the high similarity in their amino acid sequence, PXR and CAR have very distinct modes of activation. Some aspects of CXR function, e.g. direct ligand activation and high promiscuity are very reminiscent of PXR. On the other hand, cellular localization studies revealed common characteristics of CXR and CAR in terms of cytoplasmic-nuclear distribution. Finally, CXR has unique properties regarding its regulation in comparison to PXR and CAR. CONCLUSION: Our finding thus strongly suggest that CXR constitutes an ancestral gene which has evolved into PXR and CAR in mammals. Future studies should elucidate the reason for this divergence in mammalian versus non-mammalian species

    The protein structure initiative structural genomics knowledgebase

    Get PDF
    The Protein Structure Initiative Structural Genomics Knowledgebase (PSI SGKB, http://kb.psi-structuralgenomics.org) has been created to turn the products of the PSI structural genomics effort into knowledge that can be used by the biological research community to understand living systems and disease. This resource provides central access to structures in the Protein Data Bank (PDB), along with functional annotations, associated homology models, worldwide protein target tracking information, available protocols and the potential to obtain DNA materials for many of the targets. It also offers the ability to search all of the structural and methodological publications and the innovative technologies that were catalyzed by the PSI's high-throughput research efforts. In collaboration with the Nature Publishing Group, the PSI SGKB provides a research library, editorials about new research advances, news and an events calendar to present a broader view of structural biology and structural genomics. By making these resources freely available, the PSI SGKB serves as a bridge to connect the structural biology and the greater biomedical communitie

    The Protein Model Portal

    Get PDF
    Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at http://www.proteinmodelportal.org and from the PSI Structural Genomics Knowledgebase

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    CXR, a chicken xenobiotic-sensing orphan nuclear receptor, is related to both mammalian pregnane X receptor (PXR) and constitutive androstane receptor (CAR)

    Get PDF
    Nuclear receptors constitute a large family of ligand-modulated transcription factors that mediate cellular responses to small lipophilic molecules, including steroids, retinoids, fatty acids, and exogenous ligands. Orphan nuclear receptors with no known endogenous ligands have been discovered to regulate drug-mediated induction of cytochromes P450 (CYP), the major drug-metabolizing enzymes. Here, we report the cloning of an orphan nuclear receptor from chicken, termed chicken xenobiotic receptor (CXR), that is closely related to two mammalian xenobiotic-activated receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Expression of CXR is restricted to tissues where drug induction of CYPs predominantly occurs, namely liver, kidney, small intestine, and colon. Furthermore, CXR binds to a previously identified phenobarbital-responsive enhancer unit (PBRU) in the 5′-flanking region of the chicken CYP2H1 gene. A variety of drugs, steroids, and chemicals activate CXR in CV-1 monkey cell transactivation assays. The same agents induce PBRU-dependent reporter gene expression and CYP2H1 transcription in a chicken hepatoma cell line. These results provide convincing evidence for a major role of CXR in the regulation of CYP2H1 and add a member to the family of xenobiotic-activated orphan nuclear receptors

    In silico approaches, and in vitro and in vivo experiments to predict induction of drug metabolism

    No full text
    Despite being described more than 40 years ago, the molecular mechanism that regulates hepatic induction of cytochromes P450 and other drug-metabolizing enzymes and drug transporters by xenobiotics has remained enigmatic until recently. A major breakthrough was the discovery of the orphan nuclear receptors pregnane X receptor and constitutive androstane receptor playing key roles as species-specific xenosensors in this induction response. Using this newly acquired knowledge, the human induction response can now be more accurately predicted. This is of considerable clinical importance, since induction of cytochrome P450s and other enzymes can lead to unwanted drug-drug interactions, adverse drug reactions and drug toxicity. In this review, in vitro, in vivo and in silico techniques are discussed that can identify troublesome compounds at an early stage and that can help to design new, safer medicines faster

    Identification of the xenosensors regulating human 5-aminolevulinate synthase

    No full text
    Heme is an essential component of numerous hemoproteins with functions including oxygen transport, energy metabolism, and drug biotransformation. In nonerythropoietic cells, 5-aminolevulinate synthase (ALAS1) is the rate-limiting enzyme in heme biosynthesis. Upon exposure to drugs that induce cytochromes P450 and other drug-metabolizing enzymes, ALAS1 is transcriptionally up-regulated, increasing the rate of heme biosynthesis to provide heme for cytochrome P450 hemoproteins. We used a combined in silico-in vitro approach to identify sequences in the ALAS1 gene that mediate direct transcriptional response to xenobiotic challenge. We have characterized two enhancer elements, located 20 and 16 kb upstream of the transcriptional start site. Both elements respond to prototypic inducer drugs and interact with the human pregnane X receptor NR1I2 and the human constitutive androstane receptor NR1I3. Our results suggest that the fundamental mechanism of drug induction is the same for cytochromes P450 and ALAS1. Transcriptional activation of the ALAS1 gene is the first step in the coordinated up-regulation of apoprotein and heme synthesis in response to exogenous and endogenous signals controlling heme levels. Understanding the direct effects of drugs on heme synthesis is of clinical interest, particularly in patients with hepatic porphyrias

    iBRAIN2: Automated analysis and data handling for RNAi screens

    Full text link
    We report on the implementation of a software suite dedicated to the management and analysis of large scale RNAi High Content Screening (HCS). We describe the requirements identified amongst our different users, the supported data flow, and the implemented software. Our system is already supporting productively three different laboratories operating in distinct IT infrastructures. The system was already used to analyze hundreds of RNAi HCS plates
    corecore