15 research outputs found

    Cholesteatoma of the external ear canal: etiological factors, symptoms and clinical findings in a series of 48 cases

    Get PDF
    BACKGROUND: To evaluate symptoms, clinical findings, and etiological factors in external ear canal cholesteatoma (EECC). METHOD: Retrospective evaluation of clinical records of all consecutive patients with EECC in the period 1979 to 2005 in a tertiary referral centre. Main outcome measures were incidence rates, classification according to causes, symptoms, extensions in the ear canal including adjacent structures, and possible etiological factors. RESULTS: Forty-five patients were identified with 48 EECC. Overall incidence rate was 0.30 cases per year per 100,000 inhabitants. Twenty-five cases were primary, while 23 cases were secondary: postoperative (n = 9), postinflammatory (n = 5), postirradiatory (n = 7), and posttraumatic (n = 2). Primary EECC showed a right/left ratio of 12/13 and presented with otalgia (n = 15), itching (n = 5), occlusion (n = 4), hearing loss (n = 3), fullness (n = 2), and otorrhea (n = 1). Similar symptoms were found in secondary EECC, but less pronounced. In total the temporomandibular joint was exposed in 11 cases, while the mastoid and middle ear was invaded in six and three cases, respectively. In one primary case the facial nerve was exposed and in a posttraumatic case the atticus and antrum were invaded. In primary EECC 48% of cases reported mechanical trauma. CONCLUSION: EECC is a rare condition with inconsistent and silent symptoms, whereas the extent of destruction may be pronounced. Otalgia was the predominant symptom and often related to extension into nearby structures. Whereas the aetiology of secondary EECC can be explained, the origin of primary EECC remains uncertain; smoking and minor trauma of the ear canal may predispose

    Quantification of Retrograde Axonal Transport in the Rat Optic Nerve by Fluorogold Spectrometry

    Get PDF
    PURPOSE: Disturbed axonal transport is an important pathogenic factor in many neurodegenerative diseases, such as glaucoma, an eye disease characterised by progressive atrophy of the optic nerve. Quantification of retrograde axonal transport in the optic nerve usually requires labour intensive histochemical techniques or expensive equipment for in vivo imaging. Here, we report on a robust alternative method using Fluorogold (FG) as tracer, which is spectrometrically quantified in retinal tissue lysate. METHODS: To determine parameters reflecting the relative FG content of a sample FG was dissolved in retinal lysates at different concentrations and spectra were obtained. For validation in vivo FG was injected uni- or bilaterally into the superior colliculus (SC) of Sprague Dawley rats. The retinal lysate was analysed after 3, 5 and 7 days to determine the time course of FG accumulation in the retina (n = 15). In subsequent experiments axona transport was impaired by optic nerve crush (n = 3), laser-induced ocular hypertension (n = 5) or colchicine treatment to the SC (n = 10). RESULTS: Spectrometry at 370 nm excitation revealed two emission peaks at 430 and 610 nm. We devised a formula to calculate the relative FG content (c(FG)), from the emission spectrum. c(FG) is proportional to the real FG concentration as it corrects for variations of retinal protein concentration in the lysate. After SC injection, c(FG) monotonously increases with time (p = 0.002). Optic nerve axonal damage caused a significant decrease of c(FG) (crush p = 0.029; hypertension p = 0.025; colchicine p = 0.006). Lysates are amenable to subsequent protein analysis. CONCLUSIONS: Spectrometrical FG detection in retinal lysates allows for quantitative assessment of retrograde axonal transport using standard laboratory equipment. It is faster than histochemical techniques and may also complement morphological in vivo analyses

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    Elevated Corneal Epithelial Lines in Acanthamoeba Keratitis

    No full text
    • Elevated corneal epithelial lines are another clinical sign in Acanthamoeba corneal infection. In this report, one patient wore extended wear soft contact lenses, and another wore daily wear soft contact lenses. Both patients used distilled water and salt tablets in their lens care. Histopathologic examination of these lines revealed trophozoites and cysts. In one of the patients following penetrating keratoplasty, Acanthamoeba castellani and Acanthamoeba polyphaga were cultured by impression cytology of an epithelial line, as well as from the bulbar and tarsal conjunctiva. In the other patient who did not undergo penetrating keratoplasty, these lines appeared in the cornea one month after initial symptoms

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins
    corecore