2,528 research outputs found

    Velocity-resolved observations of water in Comet Halley

    Get PDF
    High resolution (lambda/delta lambda approx. = 3 x 10 to the 5th power) near-infrared observations of H2O emission from Comet Halley were acquired at the time of maximum post-perihelion geocentric Doppler shift. The observed widths and absolute positions of the H2O line profiles reveal characteristics of the molecular velocity field in the coma. These results support H2O outflow from a Sun-lit hemisphere or the entire nucleus, but not from a single, narrow jet emanating from the nucleus. The measured pre- and post-perihelion outflow velocities were 0.9 + or - 0.2 and 1.4 + or - 0.2 km/s, respectively. Temporal variations in the kinematic properties of the outflow were inferred from changes in the spectral line shapes. These results are consistent with the release of H2O into the coma from multiple jets

    Kirigami Actuators

    Full text link
    Thin elastic sheets bend easily and, if they are patterned with cuts, can deform in sophisticated ways. Here we show that carefully tuning the location and arrangement of cuts within thin sheets enables the design of mechanical actuators that scale down to atomically-thin 2D materials. We first show that by understanding the mechanics of a single, non-propagating crack in a sheet we can generate four fundamental forms of linear actuation: roll, pitch, yaw, and lift. Our analytical model shows that these deformations are only weakly dependent on thickness, which we confirm with experiments at centimeter scale objects and molecular dynamics simulations of graphene and MoS2_{2} nanoscale sheets. We show how the interactions between non-propagating cracks can enable either lift or rotation, and we use a combination of experiments, theory, continuum computational analysis, and molecular dynamics simulations to provide mechanistic insights into the geometric and topological design of kirigami actuators.Comment: Soft Matter, 201

    GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact

    Full text link
    GALEX observations of comet 9P/Tempel 1 using the near ultraviolet (NUV) objective grism were made before, during and after the Deep Impact event that occurred on 2005 July 4 at 05:52:03 UT when a 370 kg NASA spacecraft was maneuvered into the path of the comet. The NUV channel provides usable spectral information in a bandpass covering 2000 - 3400 A with a point source spectral resolving power of approximately 100. The primary spectral features in this range include solar continuum scattered from cometary dust and emissions from OH and CS molecular bands centered near 3085 and 2575 A, respectively. In particular, we report the only cometary CS emission detected during this event. The observations allow the evolution of these spectral features to be tracked over the period of the encounter. In general, the NUV emissions observed from Tempel 1 are much fainter than those that have been observed by GALEX from other comets. However, it is possible to derive production rates for the parent molecules of the species detected by GALEX in Tempel 1 and to determine the number of these molecules liberated by the impact. The derived quiescent production rates are Q(H2O) = 6.4e27 molecules/s and Q(CS2) = 6.7e24 molecules/s, while the impact produced an additional 1.6e32 H2O molecules and 1.3e29 CS2 molecules, a similar ratio as in quiescent outgassing.Comment: 15 pages, 4 figures, accepted for publication in the Astrophysical Journa

    Improvement Priority Ratings for Local Rural Roads in Indiana

    Get PDF

    The Influence of Group Labs on Student Adoption of Software Methodologies: An Empirical Test

    Get PDF
    The ACM\u27s CIS curriculum model calls for structured laboratories using groups to instruct students in software engineering methodologies. A social-psychological model of individual acceptance of a technological innovation is employed to empirically test the effectiveness of structured labs in fostering individual adoption of a software engineering methodology. Our findings suggest that a structured labexperience does influence a student\u27s belief system regarding the usefulness of a methodology, leading to a decision to adopt the methodology in completing individual programming assignment

    William (Bill) Peterson's contributions to ocean science, management, and policy

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwing, F. B., Sissenwine, M. J., Batchelder, H., Dam, H. G., Gomez-Gutierrez, J., Keister, J. E., Liu, H., & Peterson, J. O. William (Bill) Peterson's contributions to ocean science, management, and policy. Progress in Oceanography, 182, (2020): 102241, doi:10.1016/j.pocean.2019.102241.In addition to being an esteemed marine ecologist and oceanographer, William T. (Bill) Peterson was a dedicated public servant, a leader in the ocean science community, and a mentor to a generation of scientists. Bill recognized the importance of applied science and the need for integrated “big science” programs to advance our understanding of ecosystems and to guide their management. As the first US GLOBEC program manager, he was pivotal in transitioning the concept of understanding how climate change impacts marine ecosystems to an operational national research program. The scientific insight and knowledge generated by US GLOBEC informed and advanced the ecosystem-based management approaches now being implemented for fishery management in the US. Bill held significant leadership roles in numerous international efforts to understand global and regional ecological processes, and organized and chaired a number of influential scientific conferences and their proceedings. He was passionate about working with and training young researchers. Bill’s academic affiliations, notably at Stony Brook and Oregon State Universities, enabled him to advise, train, and mentor a host of students, post-doctoral researchers, and laboratory technicians. Under his collegial guidance they became critical independent thinkers and diligent investigators. His former students and colleagues carry on Bill Peterson’s legacy of research that helps us understand marine ecosystems and informs more effective resource stewardship and conservation

    Identifying Novel Leads Using Combinatorial Libraries: Issues and Successes

    Get PDF
    Chemically generated libraries of small, non-oligomeric compounds are being widely embraced by researchers in both industry and academia. There has been a steady development of new chemistries and equipment applied to library generation so it is now possible to synthesize almost any desired class of compound. However, there are still important issues to consider that range from what specific types of compounds should be made to concerns such as sample resynthesis, structural confirmation of the hit identified, and how to best integrate this technology into a pharmaceutical drug discovery operation. This paper illustrates our approach to new lead discovery (individual, diverse, drug-like molecules of known structural identity using a simple, spatially addressable parallel synthesis approach to prepare Multiple Diverse as well as Universal Libraries) and describes some representative examples of chemistries we had developed within these approaches (preparation of bis-benzamide phenols, thiophenes, pyrrolidines, and highly substituted biphenyls). Finally, the manuscript concludes by addressing some the present concerns that still must be considered in this field

    Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.

    Get PDF
    BAckground: Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. Results: We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. Conclusion: We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material
    corecore