724 research outputs found

    Irish Grassland Research — main achievements and advancements in the past 60 yrs and where to progress to next

    Get PDF
    peer-reviewedIn the last 60 yr Irish grassland production has increased substantially in no small part due to high-quality fundamental grassland research. Increased production from grassland has arisen from improved understanding (research and practice) of soil and plant nutrition, plant physiology and variety improvement, while improved understanding of feed evaluation, ruminant nutrition, grazing management and silage technology has contributed to increased utilisation of grassland. Annual grass DM production varies from 12.7 to 15.0 t DM/ha based on Department of Agriculture, Food and the Marine grass variety trials. More recent data from PastureBase Ireland indicate that average annual grass production (2020) on efficient dairy and dry stock farms is 13.5 and 10.0 t DM/ha, respectively. Ireland is now one of the world leaders in grassland research, particularly in the area of grazing utilisation, the development and use of grassland databases, decision support systems and grass selection indices for grass varieties. Future pasture-based systems must extend beyond food production to deliver additional benefits to farmers, to consumers and the wider society. Future systems will require more robust grazing animals with healthier functional traits, more diverse swards supporting improved animal performance and require fewer fertiliser and chemical inputs, and will support more biodiversity and enhanced carbon storage

    A new clinical algorithm embedded in a contextual behavior change intervention for higher education student drug use

    Get PDF
    Illicit drug use among higher education populations is a recognized public health issue. Brief personalized digital behavior change interventions with targeted harm-reduction can facilitate immediate support for this population. To make the intervention tailored to students’ needs, we built a clinical algorithm, informed by relevant behavior change theories and with system design features. Given the lack of previously relevant harm-reduction at student population level, functioning with the use of an algorithm, the aim of this work is twofold. We firstly explain how we developed the clinical algorithm using an empirical data synthesis approach. Secondly, we illustrate how the algorithm is implemented within the first prototype of an intervention named MyUSE, by providing an example on how the clinical algorithm is used to allocate users into different personalized intervention components. The prototype is currently in its final development phase and subsequent work will focus on examining its usability, feasibility, and effectiveness

    Selection on dispersal drives evolution of metabolic capacities for energy production in female wing-polymorphic sand field crickets, Gryllus firmus

    Get PDF
    Life history and metabolism covary, but the mechanisms and individual traits responsible for these linkages remain unresolved. Dispersal capability is a critical component of life histories that is constrained by metabolic capacities for energy production. Conflicting relationships between metabolism and life histories may be explained by accounting for variation in dispersal and maximal metabolic rates. We used female wing-polymorphic sand field crickets, Gryllus firmus, selected either for long wings (LW) and flight-capability or short wings (SW) and high early lifetime fecundity to test the hypothesis that selection on dispersal capability drives the evolution of metabolic capacities. While resting metabolic rates were similar, long-winged crickets reached higher maximal metabolic rates than short-winged crickets, resulting in improved running performance. We further provided insight into the mechanisms responsible for covariation between life history and metabolism by comparing mitochondrial content of tissues involved in powering locomotion and assessing function of mitochondria isolated from long- and short-winged crickets. This demonstrated that larger metabolic capacities in long-winged crickets were underpinned by increases in mitochondrial content of dorsoventral flight muscle and enhanced bioenergetic capacities of mitochondria within the fat body, a tissue responsible for fuel storage and mobilization. Thus, selection on flight-capability remodels metabolism in a trait and tissue-specific manner to enlarge metabolic capacities necessary for dispersal

    Genes in the postgenomic era

    Get PDF
    We outline three very different concepts of the gene - 'instrumental', 'nominal', and 'postgenomic'. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype

    Quantum textures of the many-body wavefunctions in magic-angle graphene

    Full text link
    Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that often reflect electronic correlation effects, broken symmetries, and novel collective excitations. A wide range of quantum phases has been discovered in MATBG, including correlated insulating, unconventional superconducting, and magnetic topological phases. The lack of microscopic information, including precise knowledge of possible broken symmetries, has thus far hampered our understanding of MATBG's correlated phases. Here we use high-resolution scanning tunneling microscopy to directly probe the wavefunctions of the correlated phases in MATBG. The squares of the wavefunctions of gapped phases, including those of the correlated insulators, pseudogap, and superconducting phases, show distinct patterns of broken symmetry with a 3\sqrt{3} x 3\sqrt{3} super-periodicity on the graphene atomic lattice that has a complex spatial dependence on the moir\'e superlattice scale. We introduce a symmetry-based analysis to describe our measurements of the wavefunctions of MATBG's correlated phases with a set of complex-valued local order parameters. For the correlated insulators in MATBG, at fillings of ν\nu = ±\pm 2 electrons per moir\'e unit cell relative to charge neutrality, we compare the observed quantum textures to those expected for proposed theoretical ground states. In typical MATBG devices, the textures of correlated insulators' wavefunctions closely match those of the theoretically proposed IKS order, while in ultra-low-strain samples our data has local symmetries like those of a T-IVC phase. We also study the wavefunction of MATBG's superconducting state, revealing strong signatures of intervalley coherence that can only be distinguished from those of the insulator with our phase-sensitive measurements.Comment: 5 figure

    Developing core sets for persons following amputation based on the International Classification of Functioning, Disability and Health as a way to specify functioning

    Get PDF
    Amputation is a common late stage sequel of peripheral vascular disease and diabetes or a sequel of accidental trauma, civil unrest and landmines. The functional impairments affect many facets of life including but not limited to: Mobility; activities of daily living; body image and sexuality. Classification, measurement and comparison of the consequences of amputations has been impeded by the limited availability of internationally, multiculturally standardized instruments in the amputee setting. The introduction of the International Classification of Functioning, Disability and Health (ICF) by the World Health Assembly in May 2001 provides a globally accepted framework and classification system to describe, assess and compare function and disability. In order to facilitate the use of the ICF in everyday clinical practice and research, ICF core sets have been developed that focus on specific aspects of function typically associated with a particular disability. The objective of this paper is to outline the development process for the ICF core sets for persons following amputation. The ICF core sets are designed to translate the benefits of the ICF into clinical routine. The ICF core sets will be defined at a Consensus conference which will integrate evidence from preparatory studies, namely: (a) a systematic literature review regarding the outcome measures of clinical trails and observational studies, (b) semi-structured patient interviews, (c) international experts participating in an internet-based survey, and (d) cross-sectional, multi-center studies for clinical applicability. To validate the ICF core sets field-testing will follow. Invitation for participation: The development of ICF Core Sets is an inclusive and open process. Anyone who wishes to actively participate in this process is invited to do so

    Seeing ‘Where’ through the Ears: Effects of Learning-by-Doing and Long-Term Sensory Deprivation on Localization Based on Image-to-Sound Substitution

    Get PDF
    BACKGROUND: Sensory substitution devices for the blind translate inaccessible visual information into a format that intact sensory pathways can process. We here tested image-to-sound conversion-based localization of visual stimuli (LEDs and objects) in 13 blindfolded participants. METHODS AND FINDINGS: Subjects were assigned to different roles as a function of two variables: visual deprivation (blindfolded continuously (Bc) for 24 hours per day for 21 days; blindfolded for the tests only (Bt)) and system use (system not used (Sn); system used for tests only (St); system used continuously for 21 days (Sc)). The effect of learning-by-doing was assessed by comparing the performance of eight subjects (BtSt) who only used the mobile substitution device for the tests, to that of three subjects who, in addition, practiced with it for four hours daily in their normal life (BtSc and BcSc); two subjects who did not use the device at all (BtSn and BcSn) allowed assessment of its use in the tasks we employed. The impact of long-term sensory deprivation was investigated by blindfolding three of those participants throughout the three week-long experiment (BcSn, BcSn/c, and BcSc); the other ten subjects were only blindfolded during the tests (BtSn, BtSc, and the eight BtSt subjects). Expectedly, the two subjects who never used the substitution device, while fast in finding the targets, had chance accuracy, whereas subjects who used the device were markedly slower, but showed much better accuracy which improved significantly across our four testing sessions. The three subjects who freely used the device daily as well as during tests were faster and more accurate than those who used it during tests only; however, long-term blindfolding did not notably influence performance. CONCLUSIONS: Together, the results demonstrate that the device allowed blindfolded subjects to increasingly know where something was by listening, and indicate that practice in naturalistic conditions effectively improved "visual" localization performance
    corecore