467 research outputs found

    Quantum Pairing of Impurities in Quantum Crystals

    Get PDF
    We calculated the time of pairing by quantum diffusion of ortho-H2 impurities in solid para-H2. The important feature of the pairing process is a strong directional bias associated with the dependence of the hopping rates on energy mismatches caused by the interaction of the pairing particles. This bias at moderate temperatures is against a mutual approach of particles and creates a ‘‘kinetic barrier.’’ At lower temperatures, the corresponding diffusion mechanism freezes out, which leads to a rapid increase in pairing rates. This explains a well-developed, experimentally observed maximum in the pairing time as a function of temperature: a maximum that exists in spite of a monotonic temperature dependence of individual hopping rates. Our results are in good agreement with experimental data

    Introduction to the Bethe ansatz II

    Get PDF
    Building on the fundamentals introduced in part I, we employ the Bethe ansatz to study some ground-state properties (energy, magnetization, susceptibility) of the one-dimensional s=1/2 Heisenberg antiferromagnet in zero and nonzero magnetic field. The 2-spinon triplet and singlet excitations from the zero-field ground state are discussed in detail, and their energies are calculated for finite and infinite chains. Procedures for the numerical calculation of real and complex solutions of the Bethe ansatz equations are discussed and applied. The paper is designed as a tutorial for beginning graduate students. It includes 10 problems for further study.Comment: 9 pages, 5 figure

    Monitoring the reservoir geochemistry of the Pembina Cardium CO2 monitoring project, Drayton Valley, Alberta

    Get PDF
    AbstractThe Pembina Cardium CO2 Monitoring Project in central Alberta was built to assess the Cardium formation’s storage potential for CO2 and stimulate oil production. Three baseline trips and 28 monitoring trips were undertaken over a three year period from February 2005 to March 2008 to collect fluids and gas from eight producing wells. Chemical and isotope analyses were conducted on the fluid and gas samples to determine the changes in the geochemistry of the pilot area and to assess the fate of the injected CO2. It was found that within 67 days after commencement of CO2 injection, injection CO2 break-through occurred in four of the eight monitoring wells. Further, CO2 dissolution was observed in three of the four monitoring wells in this time frame and in one well, 12–12, both CO2 dissolution and calcite mineral dissolution were observed within 67 days of the onset of CO2 injection. Within 18 months siderite dissolution and calcite dissolution were observed in all four of these wells. In the remaining four wells, CO2 dissolution was observed, indicated by a slow decreased in pH from 7.5 to 7.2 with no significant change in total alkalinity or calcium concentration in the water. Inter-well communications were observed between wells 08–11 and 12–12 by means of residual “kill fluid” migration occurring from well 12–12 to well 08–11

    Flat (001) surfaces of II-VI semiconductors: A lattice gas model

    Full text link
    We present a two-dimensional lattice gas with anisotropic interactions which model the known properties of the surface reconstructions of CdTe and ZnSe. In constrast to an earlier publication [12], the formation of anion dimers is considered. This alters the behaviour of the model considerably. We determine the phase diagram of this model by means of transfer matrix calculations and Monte Carlo simulations. We find qualitative agreement with the results of various experimental investigations.Comment: 17 pages, 5 figures. See http://theorie.physik.uni-wuerzburg.de/~ahr/ for related publication

    Interactions of CO2 with Formation Waters, Oil and Minerals and CO2 storage at the Weyburn IEA EOR site, Saskatchewan, Canada

    Get PDF
    The Weyburn oil field in Saskatchewan, Canada, is hosted in Mississippian carbonates and has been subject to injection of CO2 since 2000. A detailed mineralogy study was completed as the basis for modeling of mineral storage of injected CO2. Combining the mineralogy with kinetic reaction path models and water chemistry allows estimates of mineral storage of CO2 over 50 years of injection. These results, combined with estimates of pore volume, solubility of CO2 in oil and saline formation waters, and the initial and final pore volume saturation with respect to oil, saline water and gas/supercritical fluid allow an estimate of CO2 stored in saline water, oil and minerals over 50 years of CO2 injection. Most injected CO2 is stored in oil (6.5•106 to 1.3•107 tonnes), followed closely by storage in supercritical CO2 (7.2•106 tonnes) with saline formation water (1.5 - 2•106 tonnes) and mineral storage (2 - 6•105 tonnes) being the smallest sinks. If the mineral dawsonite forms, as modeling suggests, the majority of CO2 dissolved in oil and salineformation water will be redistributed into minerals over a period of approximately 5000 years. The composition of produced fluids from a baseline sampling program, when compared to produced fluids taken three years after injection commenced, suggest that dawsonite is increasingly stable as pH decreases due to CO2 injection. The results suggest that hydrocarbon reservoirs that contain low gravity oil and little or no initial gas saturation prior to CO2 injection, may store the majority of injected CO2 solubilized in oil, making such reservoirs the preferred targets for combined enhanced oil recovery-CO2 storage projects

    Regular breakfast consumption and type 2 diabetes risk markers in 9- to 10-year-old children in the child heart and health study in England (CHASE): a cross-sectional analysis.

    Get PDF
    BACKGROUND: Regular breakfast consumption may protect against type 2 diabetes risk in adults but little is known about its influence on type 2 diabetes risk markers in children. We investigated the associations between breakfast consumption (frequency and content) and risk markers for type 2 diabetes (particularly insulin resistance and glycaemia) and cardiovascular disease in children. METHODS AND FINDINGS: We conducted a cross-sectional study of 4,116 UK primary school children aged 9-10 years. Participants provided information on breakfast frequency, had measurements of body composition, and gave fasting blood samples for measurements of blood lipids, insulin, glucose, and glycated haemoglobin (HbA1c). A subgroup of 2,004 children also completed a 24-hour dietary recall. Among 4,116 children studied, 3,056 (74%) ate breakfast daily, 450 (11%) most days, 372 (9%) some days, and 238 (6%) not usually. Graded associations between breakfast frequency and risk markers were observed; children who reported not usually having breakfast had higher fasting insulin (percent difference 26.4%, 95% CI 16.6%-37.0%), insulin resistance (percent difference 26.7%, 95% CI 17.0%-37.2%), HbA1c (percent difference 1.2%, 95% CI 0.4%-2.0%), glucose (percent difference 1.0%, 95% CI 0.0%-2.0%), and urate (percent difference 6%, 95% CI 3%-10%) than those who reported having breakfast daily; these differences were little affected by adjustment for adiposity, socioeconomic status, and physical activity levels. When the higher levels of triglyceride, systolic blood pressure, and C-reactive protein for those who usually did not eat breakfast relative to those who ate breakfast daily were adjusted for adiposity, the differences were no longer significant. Children eating a high fibre cereal breakfast had lower insulin resistance than those eating other breakfast types (p for heterogeneity <0.01). Differences in nutrient intakes between breakfast frequency groups did not account for the differences in type 2 diabetes markers. CONCLUSIONS: Children who ate breakfast daily, particularly a high fibre cereal breakfast, had a more favourable type 2 diabetes risk profile. Trials are needed to quantify the protective effect of breakfast on emerging type 2 diabetes risk. Please see later in the article for the Editors' Summary

    Human cytomegalovirus protein pUL36: A dual cell death pathway inhibitor.

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of intrinsic, innate, and adaptive viral immune evasion. Here, we employed multiplexed tandem mass tag-based proteomics to characterize host proteins targeted for degradation late during HCMV infection. This approach revealed that mixed lineage kinase domain-like protein (MLKL), a key terminal mediator of cellular necroptosis, was rapidly and persistently degraded by the minimally passaged HCMV strain Merlin but not the extensively passaged strain AD169. The strain Merlin viral inhibitor of apoptosis pUL36 was necessary and sufficient both to degrade MLKL and to inhibit necroptosis. Furthermore, mutation of pUL36 Cys131 abrogated MLKL degradation and restored necroptosis. As the same residue is also required for pUL36-mediated inhibition of apoptosis by preventing proteolytic activation of procaspase-8, we define pUL36 as a multifunctional inhibitor of both apoptotic and necroptotic cell death

    Diversity of methyl halide-degrading microorganisms in oceanic and coastal waters

    Get PDF
    Methyl halides have a significant impact on atmospheric chemistry, particularly in the degradation of stratospheric ozone. Bacteria are known to contribute to the degradation of methyl halides in the oceans and marine bacteria capable of using methyl bromide and methyl chloride as sole carbon and energy source have been isolated. A genetic marker for microbial degradation of methyl bromide ( cmuA ) was used to examine the distribution and diversity of these organisms in the marine environment. Three novel marine clades of cmuA were identified in unamended seawater and in marine enrichment cultures degrading methyl halides. Two of these cmuA clades are not represented in extant bacteria, demonstrating the utility of this molecular marker in identifying uncultivated marine methyl halide-degrading bacteria. The detection of populations of marine bacteria containing cmuA genes suggests that marine bacteria employing the CmuA enzyme contribute to methyl halide cycling in the ocean

    Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy

    Get PDF
    The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively, this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoforms we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3β proteins encoded by independent vertebrate genes. Our analysis suggests that different proteoforms generated by alternative splicing are likely to perform distinct functions

    Confidence College – an online education tool for neurology patients

    Get PDF
    COVID-19 and its aftermath highlight the importance of patient self-care and involvement in monitoring and improving their health. Resources to guide this are essential. Our objective was to create a web-based patient education tool, to facilitate patient education and empowerment for people with epilepsy, multiple sclerosis and Parkinson’s disease, available without cost to patients, carers and clinicians. This project was conducted within community and secondary neurology services. Patients and their carers were involved in designing, reviewing and revising the tool, as equal partners with clinicians and digital engineers. A web-based design template was developed with graphics and links to enable patients to create personalised plans. Participants are patients, carers, clinicians (neurology consultants and specialist nurses), neurological charities, the London Neuroscience Clinical Network, NHS England and Shift.ms (a service design team with experience in creating digital services for individuals living with neurological conditions). Shift.ms conducted in-depth interviews. Clinicians used evidence from personal and PubMed databases. Shift.ms analysed and co-ordinated the responses, and designed the pilot tool. Confidence College provides a delivery model for patient education relating to multiple sclerosis, epilepsy and Parkinson’s disease. It requires follow-up evaluation regarding uptake. This web-based accessible patient empowerment tool has no limit on recurrent use, low maintenance costs and no additional costs in up-scaling the number of users. It is ideally suited for use during and after the COVID-19 pandemic
    corecore