330 research outputs found

    Spin tunneling and topological selection rules for integer spins

    Full text link
    We present topological interference effects for the tunneling of a single large spin, which are caused by the symmetry of a general class of magnetic anisotropies. The interference originates from spin Berry phases associated with different tunneling paths exposed to the same dynamics. Introducing a generalized path integral for coherent spin states, we evaluate transition amplitudes between ground as well as low-lying excited states. We show that these interference effects lead to topological selection rules and spin-parity effects for integer spins that agree with quantum selection rules and which thus provide a generalization of the Kramers degeneracy to integer spins. Our results apply to the molecular magnets Mn12 and Fe8.Comment: 4 pages, 3 EPS figures, REVTe

    The Grover algorithm with large nuclear spins in semiconductors

    Full text link
    We show a possible way to implement the Grover algorithm in large nuclear spins 1/2<I<9/2 in semiconductors. The Grover sequence is performed by means of multiphoton transitions that distribute the spin amplitude between the nuclear spin states. They are distinguishable due to the quadrupolar splitting, which makes the nuclear spin levels non-equidistant. We introduce a generalized rotating frame for an effective Hamiltonian that governs the non-perturbative time evolution of the nuclear spin states for arbitrary spin lengths I. The larger the quadrupolar splitting, the better the agreement between our approximative method using the generalized rotating frame and exact numerical calculations.Comment: 11 pages, 18 EPS figures, REVTe

    Angular dependence of domain wall resistivity in SrRuO3_{{\bf 3}} films

    Full text link
    SrRuO3{\rm SrRuO_3} is a 4d itinerant ferromagnet (Tc_{c} \sim 150 K) with stripe domain structure. Using high-quality thin films of SrRuO3_{3} we study the resistivity induced by its very narrow (3\sim 3 nm) Bloch domain walls, ρDW\rho_{DW} (DWR), at temperatures between 2 K and Tc_{c} as a function of the angle, θ\theta , between the electric current and the ferromagnetic domains walls. We find that ρDW(T,θ)=sin2θρDW(T,90)+B(θ)ρDW(T,0)\rho_{DW}(T,\theta)=\sin^2\theta \rho_{DW}(T,90)+B(\theta)\rho_{DW}(T,0) which provides the first experimental indication that the angular dependence of spin accumulation contribution to DWR is sin2θ\sin^2\theta. We expect magnetic multilayers to exhibit a similar behavior.Comment: 5 pages, 5 figure

    Topological density fluctuations and gluon condensate around confining string in Yang-Mills theory

    Get PDF
    We study the structure of the confining string in Yang-Mills theory using the method of the field strength correlators. The method allows us to demonstrate that both the local fluctuations of the topological charge and the gluon condensate are suppressed in the vicinity of the string axis in agreement with results of lattice simulations.Comment: 10 pages, 3 figures, RevTeX 4.

    Monopole clusters, center vortices, and confinement in a Z(2) gauge-Higgs system

    Full text link
    We propose to use the different kinds of vacua of the gauge theories coupled to matter as a laboratory to test confinement ideas of pure Yang-Mills theories. In particular, the very poor overlap of the Wilson loop with the broken string states supports the 't Hooft and Mandelstam confinement criteria. However in the Z(2) gauge-Higgs model we use as a guide we find that the condensation of monopoles and center vortices is a necessary, but not sufficient condition for confinement.Comment: 13 pages, 6 figures, minor changes, version to be published on Phys. Rev.
    corecore