330 research outputs found
Spin tunneling and topological selection rules for integer spins
We present topological interference effects for the tunneling of a single
large spin, which are caused by the symmetry of a general class of magnetic
anisotropies. The interference originates from spin Berry phases associated
with different tunneling paths exposed to the same dynamics. Introducing a
generalized path integral for coherent spin states, we evaluate transition
amplitudes between ground as well as low-lying excited states. We show that
these interference effects lead to topological selection rules and spin-parity
effects for integer spins that agree with quantum selection rules and which
thus provide a generalization of the Kramers degeneracy to integer spins. Our
results apply to the molecular magnets Mn12 and Fe8.Comment: 4 pages, 3 EPS figures, REVTe
The Grover algorithm with large nuclear spins in semiconductors
We show a possible way to implement the Grover algorithm in large nuclear
spins 1/2<I<9/2 in semiconductors. The Grover sequence is performed by means of
multiphoton transitions that distribute the spin amplitude between the nuclear
spin states. They are distinguishable due to the quadrupolar splitting, which
makes the nuclear spin levels non-equidistant. We introduce a generalized
rotating frame for an effective Hamiltonian that governs the non-perturbative
time evolution of the nuclear spin states for arbitrary spin lengths I. The
larger the quadrupolar splitting, the better the agreement between our
approximative method using the generalized rotating frame and exact numerical
calculations.Comment: 11 pages, 18 EPS figures, REVTe
Angular dependence of domain wall resistivity in SrRuO films
is a 4d itinerant ferromagnet (T 150 K) with
stripe domain structure. Using high-quality thin films of SrRuO we study
the resistivity induced by its very narrow ( nm) Bloch domain walls,
(DWR), at temperatures between 2 K and T as a function of the
angle, , between the electric current and the ferromagnetic domains
walls. We find that which provides the first experimental
indication that the angular dependence of spin accumulation contribution to DWR
is . We expect magnetic multilayers to exhibit a similar
behavior.Comment: 5 pages, 5 figure
Topological density fluctuations and gluon condensate around confining string in Yang-Mills theory
We study the structure of the confining string in Yang-Mills theory using the
method of the field strength correlators. The method allows us to demonstrate
that both the local fluctuations of the topological charge and the gluon
condensate are suppressed in the vicinity of the string axis in agreement with
results of lattice simulations.Comment: 10 pages, 3 figures, RevTeX 4.
Monopole clusters, center vortices, and confinement in a Z(2) gauge-Higgs system
We propose to use the different kinds of vacua of the gauge theories coupled
to matter as a laboratory to test confinement ideas of pure Yang-Mills
theories. In particular, the very poor overlap of the Wilson loop with the
broken string states supports the 't Hooft and Mandelstam confinement criteria.
However in the Z(2) gauge-Higgs model we use as a guide we find that the
condensation of monopoles and center vortices is a necessary, but not
sufficient condition for confinement.Comment: 13 pages, 6 figures, minor changes, version to be published on Phys.
Rev.
- …