49 research outputs found

    Investigations of biologically relevant free radicals utilizing novel gas-phase analytical techniques

    Get PDF
    The investigation of gas-phase radical cations as a method of modeling and exploring the fundamental chemical characteristics of radicals found in biological systems has generated substantial interest over the last decade. Gas-phase techniques overcome the difficulties incurred when studying the highly reactive and often transient species in solution where they are subject to undesirable side reactions. This dissertation aims to expand the body of knowledge regarding biological free radicals through the study of their gas-phase analogues. Specifically, the studies undertaken focus on the elucidation of the intrinsic thermodynamic and kinetic characteristics unencumbered by solvation and counter-ion effects. The majority of the projects presented herein focus on radical migration in amino acid- and peptide-based systems. The effect of metal ion complexation, in comparison to protonation, on the propensity for thiyl radicals to undergo hydrogen atom transfer (HAT) and generate alpha-carbon (Calpha) radicals is investigated in depth. Two amino acids, cysteine (Cys) and its analogue homocysteine (Hcy), and the redox-active tripeptide glutathione (GSH) are evaluated using the combination of ion-molecule reactions (IMRs), infrared multiple photon dissociation (IRMPD) spectroscopy, and theoretical calculations. In all cases, species possessing Calpha-based radicals were found to be thermodynamically favorable compared to their thiyl-based radical counterparts due to the effect of captodative stabilization. Metal ion complexation was found, both experimentally and theoretically, to increase this effect in the order K⁺\u3eNa⁺\u3eLi⁺. Evaluation of the potential energy surface for alkali metal ion complexes of Cys and Hcy radicals revealed that the energy barrier towards S-to-Calpha radical migration followed the same trend. This explains the observation of radical migration via 1,4-HAT in metal-bound Hcy radicals. The more strained four-membered transition state did not allow for 1,3-HAT in Cys radical metal ion adducts. Although transition states were not calculated for radical migration within the GSH system, the experimental results indicate that alkali metal ions facilitate HAT also in the order K⁺\u3eNa⁺\u3eLi⁺ and all to a greater degree than seen in the protonated radical species. As a whole, these studies demonstrate that alkali metal ion complexation both stabilizes the radical ions and decreases the energy required for isomerization. In biological systems, radical migration is commonly observed between the side chains of redox-active amino acids tyrosine (Tyr) and Cys. This behavior is modeled both intramolecularly (via IMR of phenoxyl radical cations and a simple thiol neutral) and intermolecularly through analysis of the model peptide LysTyrCys. In both cases, Tyr-to-Cys radical migration was found to occur. The effect of hydrogen bonding and spin electron density on the phenoxyl radical (Tyr radical model) reactivity was evaluated using a series of aromatic model systems. As expected, IMRs revealed that higher radical delocalization and increased strength of hydrogen bonding decreased the reactivity of these oxygen-based radicals. Such observations agree with the notion that the kinetics of radical-initiated enzyme catalysis may be modulated by the local environment within the protein. The formation of radicals in building blocks of DNA is particularly concerning due to the severe consequences they can inflict (e.g., eventual mutagenesis and cancer). An initial attempt to study the fundamental chemistry of nucleobase radical cations is presented. Formation of the cytosine radical cation Cyt˙⁺ was achieved via oxidation of cytosine by Cu(II) in the gas phase, and the propensity of the ion to undergo several radical-driven reactions was screened using IMRs. Tautomer analysis was attempted using gas-phase infrared and ultraviolet spectroscopy and a mixture of isomers with similar energies were found. This study represents a proof-of-principle for investigating the radical cations of the constituents of DNA using a combination of gas-phase techniques and computation chemistry

    COMBINING THE POWER OF IRMPD WITH ION-MOLECULE REACTIONS: THE STRUCTURE AND REACTIVITY OF RADICAL IONS OF CYSTEINE AND ITS DERIVATIVES

    Get PDF
    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the �mobile proton�. Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures

    Neurodevelopmental-behavioural paediatrics

    No full text
    Purpose of review Neurodevelopmental-behavioural paediatrics (NBP) is a field of medical practice that has arisen in response to recent changes in child health epidemiology. This review considers how the profession of NBP is addressing clinical need, and discusses possibilities for future development of the field. Recent findings Research publications relevant to NBP clinical practice focus primarily on cause (e.g. biology, imaging, neuropsychology), early detection, diagnostic methodologies and initial treatment strategies, with emphasis on psychotropic medication. Translation of this research implies that NBP clinical services should be undertaken using algorithmic methodologies, and evaluated against treatment attributable outcomes. These strategies and outcomes potentially define the central purpose of the profession; however, they may not be sufficient to best help the children seen. Summary Two sets of information inform and extend consideration of NBP purpose and strategy. Firstly, longitudinal and adult studies indicate that even with treatment, problems persist in adult life for a significant proportion of children with neurodevelopmental-behavioural disorders. Secondly, NBP clinical practice deals with significant, irreducible complexity and uncertainty, arising from both child-diagnostic and contextual factors. Complexity limits the extent to which evidence-based clinical algorithms are able to inform care. Suggestions for how to address both challenges are offered

    Neurodevelopmental–behavioural paediatrics

    Full text link

    Macbeth

    No full text
    Based on the play Macbeth by William Shakespeare.90 pagesAdapted screenpla
    corecore