3,739 research outputs found

    Paradigms and poverty in global energy policy: research needs for achieving universal energy access

    Get PDF
    This research letter discusses elements of a long-term interdisciplinary research effort needed to help ensure the maximum social, economic, and environmental benefits of achieving secure universal access to modern energy services. Exclusion of these services affects the lives and livelihoods of billions of people. The research community has an important, but not yet well-defined, role to play

    The African Lungfish (\u3cem\u3eProtopterus dolloi\u3c/em\u3e): Ionoregulation and Osmoregulation in a Fish out of Water

    Get PDF
    Although urea production and metabolism in lungish have been thoroughly studied, we have little knowledge of how internal osmotic and electrolyte balance are controlled during estivation or in water. We tested the hypothesis that, compared with the body surface of teleosts, the slender African lungfish (Protopterus dolloi) body surface was relatively impermeable to water, Na+ and Cl- due to its greatly reduced gills. Accordingly, we measured the tritiated water (3H-H2O) flux in P. dolloi in water and during air exposure. In water, 3H-H2O efflux was comparable with the lowest measurements reported in freshwater teleosts, with a rate constant (K) of 17.6% body water h-1. Unidirectional ion fluxes, measured using 22Na+ and 36Cl-, indicated that Na+ and Cl- influx was more than 90% lower than values reported in most freshwater teleosts. During air exposure, a cocoon formed within 1 wk that completely covered the dorsolateral body surface. However, there were no disturbances to blood osmotic or ion (Na+, Cl-) balance, despite seven- to eightfold increases in plasma urea after 20 wk. Up to 13-fold increases in muscle urea (on a dry-weight basis) were the likely explanation for the 56% increase in muscle water content observed after 20 wk of air exposure. The possibility that muscle acted as a “water reservoir” during air exposure was supported by the 20% decline in body mass observed during subsequent reimmersion in water. This decline in body mass was equivalent to 28 mL water in a 100-g animal and was very close to the calculated net water gain (approximately 32 mL) observed during the 20-wk period of air exposure. Tritiated water and unidirectional ion fluxes on air-exposed lungfish revealed that the majority of water and ion exchange was via the ventral body surface at rates that were initially similar to aquatic rates. The 3H-H2O flux declined over time but increased upon reimmersion. We conclude that the slender lungfish body surface, including the gills, has relatively low permeability to water and ions but that the ventral surface is an important site of osmoregulation and ionoregulation. We further propose that an amphibian-like combination of ventral skin water and ion permeability, plus internal urea accumulation during air exposure, allows P. dolloi to extract water from its surroundings and to store water in the muscle when the water supply becomes limited

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Heralded quantum steering over a high-loss channel

    Get PDF
    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8±0.114.8\pm0.1 dB of added loss, equivalent to approximately 8080 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater.Comment: 8 pages, 5 figure

    Ultrasound assessment of lower limb muscle mass in response to resistance training in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantifying the improvements in lower limb or quadriceps muscle mass following resistance training (RT), is an important outcome measure in COPD. Ultrasound is a portable, radiation free imaging technique that can measure the size of superficial muscles belonging to the quadriceps group such as the rectus femoris, but has not been previously used in COPD patients following RT. We compared the responsiveness of ultrasound derived measures of quadriceps mass against dual energy x-ray absorptiometry (DEXA), in patients with COPD and healthy controls following a programme of high intensity knee extensor RT.</p> <p>Methods</p> <p>Portable ultrasound was used to assess the size of the dominant quadriceps in 45 COPD patients and 19 healthy controls-before, during, and after 8 weeks of bilateral high intensity isokinetic knee extensor RT. Scanning was performed at the mid-thigh region, and 2 indices of quadriceps mass were measured-rectus femoris cross-sectional area (RF<sub>csa</sub>) and quadriceps muscle thickness (Q<sub>t</sub>). Thigh lean mass (T<sub>dexa</sub>) was determined by DEXA.</p> <p>Results</p> <p>Training resulted in a significant increase in T<sub>dexa</sub>, RF<sub>csa</sub> and Q<sub>t</sub> in COPD patients [5.7%, 21.8%, 12.1% respectively] and healthy controls [5.4%, 19.5%, 10.9 respectively]. The effect size for the changes in RF<sub>csa</sub> (COPD= 0.77; Healthy=0.83) and Q<sub>t</sub> (COPD=0.36; Healthy=0.78) were greater than the changes in T<sub>dexa</sub> (COPD=0.19; Healthy=0.26) following RT.</p> <p>Conclusions</p> <p>Serial ultrasound measurements of the quadriceps can detect changes in muscle mass in response to RT in COPD. The technique has good reproducibility, and may be more sensitive to changes in muscle mass when compared to DEXA.</p> <p>Trial registration</p> <p><url>http://www.controlled-trials.com</url> (Identifier: ISRCTN22764439)</p

    Constraints on Near-Ridge Magmatism Using \u3csup\u3e40\u3c/sup\u3eAr/\u3csup\u3e39\u3c/sup\u3eAr Geochronology of Enriched MORB from the 8°20\u27 N Seamount Chain

    Get PDF
    Our understanding of the spatial-temporal-compositional relationships between off-axis magmatism and mid-ocean ridge spreading centers is limited. Determining the 40Ar/39Ar ages of mid-ocean ridge basalt (MORB) lavas erupting near mid-ocean ridges (MOR) has been a challenge due to the characteristically low K2O contents in incompatible element-depleted normal MORB (NMORB). High-precision 40Ar/39Ar geochronology is used here to determine ages of young, basaltic lavas erupted along the 8°20\u27 N seamount chain west of the East Pacific Rise (EPR) axis that have a range of incompatible element enrichments (EMORB) suitable for 40Ar/39Ar geochronology (e.g., K2O contents \u3e 0.3 wt%). 40Ar/39Ar ages were determined in 29 well-characterized basalts sampled using HOV Alvin and dredging. Detailed geochronology and geochemical analyses provide important constraints on the timing, distribution, and origins of lavas that constructed this extensive volcanic lineament relative to magmatism beneath the adjacent EPR axis. Seamount eruption ages are up to ∼1.6 Ma younger than the underlying lithosphere, supporting a model of prolonged off-axis magmatism for at least 2 Myrs at distances as great as ∼90 km from the ridge axis. Increasing geochemical heterogeneity with eruption distance reflects the diminishing effect of sub-ridge melt focusing. The range of geochemically distinct lavas erupted at given distances from the ridge highlights the dynamic nature of the near-ridge magmatic environment over Myr timescales. Linear ridge-like (EPR-parallel) morphotectonic features erupt the youngest and most incompatible element-enriched lavas of the entire seamount chain, indicating there is a recent change in the influence of mantle heterogeneity and off-axis melt metasomatism on the near-ridge lithospheric mantle. Changes in seamount morphologies are attributed to counter-clockwise rotation and southward migration of the nearby Siqueiros transform over the last few million years

    Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework

    Get PDF
    Mathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to help overcome biases of single models. We report on the development of a first multi-model ensemble of three lymphatic filariasis (LF) models (EPIFIL, LYMFASIM, and TRANSFIL), and evaluate its predictive performance in comparison with that of the constituents using calibration and validation data from three case study sites, one each from the three major LF endemic regions: Africa, Southeast Asia and Papua New Guinea (PNG). We assessed the performance of the respective models for predicting the outcomes of annual MDA strategies for various baseline scenarios thought to exemplify the current endemic conditions in the three regions. The results show that the constructed multi-model ensemble outperformed the single models when evaluated across all sites. Single models that best fitted calibration data tended to do less well in simulating the out-of-sample, or validation, intervention data. Scenario modelling results demonstrate that the multi-model ensemble is able to compensate for variance between single models in order to produce more plausible predictions of intervention impacts. Our results highlight the value of an ensemble approach to modelling parasite control dynamics. However, its optimal use will require further methodological improvements as well as consideration of the organizational mechanisms required to ensure that modelling results and data are shared effectively between all stakeholders
    corecore