12,018 research outputs found

    Competing in the RoboCup Rescue Robot League

    Get PDF
    RoboCup Rescue is an international competition in which robots compete to find disaster victims in a simulated earthquake environment. It features both a Rescue Simulation League (RSL) which is entirely computer simulated, and a Rescue Robot League (RRL) with real robots and a test arena. This paper will describe the experience gained sending an undergraduate team to compete in the Rescue Robot League at the RoboCup German Open in 2008 and 2009. The design of the test arena and the rules of the competition will be outlined; as will the approaches taken by different teams; and the competition results

    Evaluating human performance modeling for system assessment: Promise and problems

    Get PDF
    The development and evaluation of computational human performance models is examined. An intention is to develop models which can be used to interact with system prototypes and simulations to perform system assessment. Currently LR is working on a set of models emulating cognitive, psychomotor, auditory, and visual activity for multiple operator positions of a command and control simulation system. These models, developed in conjunction with BBN Systems and Technologies, function within the simulation environment and allow for both unmanned system assessment and manned (human-in-loop) assessment of system interface and team interactions. These are relatively generic models with built-in flexibility which allows modification of some model parameters. These models have great potential for improving the efficiency and effectiveness of system design, test, and evaluation. However, the extent of the practical utility of these models is unclear. Initial verification efforts comparing model performance within the simulation to actual human operators on a similar, independent simulation have been performed and current efforts are directed at comparing human and model performance within the same simulation environment

    Faraday cage angled-etching of nanostructures in bulk dielectrics

    Full text link
    For many emerging optoelectronic materials, heteroepitaxial growth techniques do not offer the same high material quality afforded by bulk, single-crystal growth. However, the need for optical, electrical, or mechanical isolation at the nanoscale level often necessitates the use of a dissimilar substrate, upon which the active device layer stands. Faraday cage angled-etching (FCAE) obviates the need for these planar, thin-film technologies by enabling in-situ device release and isolation through an angled-etching process. By placing a Faraday cage around the sample during inductively-coupled plasma reactive ion etching (ICP-RIE), the etching plasma develops an equipotential at the cage surface, directing ions normal to its face. In this Article, the effects Faraday cage angle, mesh size, and sample placement have on etch angle, uniformity, and mask selectivity are investigated within a silicon etching platform. Simulation results qualitatively confirm experiments and help to clarify the physical mechanisms at work. These results will help guide FCAE process design across a wide range of material platforms

    Characterization of Volatile and Metabolite Compounds Produced by \u3ci\u3eLactococcus lactis\u3c/i\u3e in Low-Fat and Full-Fat Cheddar Cheese Extract

    Get PDF
    This study was conducted to compare and contrast potential aroma compounds in the headspace and small molecule metabolites produced as a result of starter culture metabolism in a full-fat and low-fat cheddar cheese model system. Past studies have indicated differences in the headspace flavor compound profiles between full-fat and low-fat Cheddar cheeses with no indication as to what compounds were produced as a result of starter culture metabolism. Starter cultures were incubated in a Cheddar cheese extract environment that was made up of the water-soluble portion of Cheddar cheese with environmental conditions mimicking full-fat and low-fat Cheddar cheese by altering the levels of salt and milk fat globular membrane in the system. Incubation times were up to 14 days at 30°C and samples were taken at days 0, 1, 7, and 14. Headspace analysis was accomplished using solid phase micro-extraction coupled with GC-MS and small metabolites were monitored using metabolomic methods coupled with GC-MS. Results indicate that the starter culture was responsible for an increase in the concentration of propan-2-one, heptan-2-one, 3-methylbutanal, heptanal, benzaldehyde, 2-ethylhexanal, and dimethyl trisulfide in both the full-fat and low-fat medias when compared to their respective controls. While heptanal was present at a higher concentration in the full-fat treatments compared to the low-fat treatments and 2- ethylhexan-1-ol and isothiocyanato cyclohexane were present at higher concentrations in the low-fat treatments compared to the full-fat treatments. Principal component analysis for the headspace compounds showed a clear separation of the treatments with heptanal, p-cymene, nonan-2-one, and undecan-2-one contributing the most to the variation between the full-fat and low-fat samples, while 3- methylbutanal, heptan-2-one, benzaldehyde, 2-ethylhexan-1-ol, 2,6-dimethylheptan-4-ol, and 3-methylbutanol contributed the most to the variation between the controls and treatments. The metabolomics data for both the bacteria and Cheddar cheese extract did not provide a clear separation between the full-fat and low-fat samples

    A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    Get PDF
    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life
    corecore