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ABSTRACT 

 
 

Characterization of Volatile and Metabolite Compounds Produced by Lactococcus lactis  
 

in Low-Fat and Full-Fat Cheddar Cheese Extract 
 
 

by 
 
 

Michael J. Young, Master of Science 
 

Utah State University, 2011 
 
 

Major Professor:  Dr. Robert E. Ward 
Department:  Nutrition, Dietetics, and Food Sciences 
 
 

This study was conducted to compare and contrast potential aroma compounds in 

the headspace and small molecule metabolites produced as a result of starter culture 

metabolism in a full-fat and low-fat cheddar cheese model system.  Past studies have 

indicated differences in the headspace flavor compound profiles between full-fat and 

low-fat Cheddar cheeses with no indication as to what compounds were produced as a 

result of starter culture metabolism.  

 Starter cultures were incubated in a Cheddar cheese extract environment that was 

made up of the water-soluble portion of Cheddar cheese with environmental conditions 

mimicking full-fat and low-fat Cheddar cheese by altering the levels of salt and milk fat 

globular membrane in the system.  Incubation times were up to 14 days at 30°C and 

samples were taken at days 0, 1, 7, and 14.  Headspace analysis was accomplished using 

solid phase micro-extraction coupled with GC-MS and small metabolites were monitored 

using metabolomic methods coupled with GC-MS.    
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Results indicate that the starter culture was responsible for an increase in the 

concentration of propan-2-one, heptan-2-one, 3-methylbutanal, heptanal, benzaldehyde, 

2-ethylhexanal, and dimethyl trisulfide in both the full-fat and low-fat medias when 

compared to their respective controls.  While heptanal was present at a higher 

concentration in the full-fat treatments compared to the low-fat treatments and 2-

ethylhexan-1-ol and isothiocyanato cyclohexane were present at higher concentrations in 

the low-fat treatments compared to the full-fat treatments. 

Principal component analysis for the headspace compounds showed a clear 

separation of the treatments with heptanal, p-cymene, nonan-2-one, and undecan-2-one 

contributing the most to the variation between the full-fat and low-fat samples, while 3-

methylbutanal, heptan-2-one, benzaldehyde, 2-ethylhexan-1-ol, 2,6-dimethylheptan-4-ol, 

and 3-methylbutanol contributed the most to the variation between the controls and 

treatments. 

The metabolomics data for both the bacteria and Cheddar cheese extract did not 

provide a clear separation between the full-fat and low-fat samples. 

(91 pages) 
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INTRODUCTION 
 
 

The CDC reported in 2008 that Colorado was the only state with a prevalence of 

obesity less than 20%.  There were 32 states with prevalence rates equal to or greater than 

25%.  This has been a cause of concern due to the health risks associated with obesity.  

Dieticians have suggested a reduction in total calories in the diet as a way to reduce 

obesity.    Recent dietary guidelines indicate that fat should account for less than 30% of 

the total energy intake in the American diet (McDonald 2000).  As a result of these 

guidelines, demand for low-fat (LF) and reduced-fat food alternatives has risen. 

According to the Code of Federal Regulations, Cheddar cheese is a high fat food.  

Most traditional Cheddar cheeses contain 9 grams of total fat per one ounce serving, 

which translates to 14% of the daily intake of total fat in a 2000 calorie diet.  As the 

consumer searches for food options, with this increase in awareness of the need to reduce 

total caloric intake due to fat, labels that contain a high amount of fat may deter purchase. 

The increased demand for lower fat alternatives to full-fat (FF) Cheddar cheese 

has resulted in the development of reduced-fat Cheddar cheese products.  The primary 

difference between reduced-fat Cheddar cheese and FF Cheddar cheese is the reduction 

of fat content.  The fat has to be replaced to maintain body and in most cases this is 

accomplished by increasing the moisture content. 

The reduction of fat produces a product that has a lower consumer acceptance due 

to its rubbery texture and its bland and bitter flavor (Banks 2004).  The flavor, aroma, and 

texture are important components of the overall sensory experience of Cheddar cheese.  

In 1998 the sales of LF and reduced-fat cheese accounted for 20% of the total cheese sold 

in United States supermarkets (Mistry 2001).  It is has been suggested that the growth of 
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LF and reduced-fat cheese may have stalled due to consumer demands for a higher 

quality product and the consumer’s memory of poor quality in the initial LF and reduced-

fat cheese products (Guinee and others 1998).  

The development of Cheddar cheese flavor is a complicated process that occurs 

primarily during ripening.  The main constituents of milk interact with native enzymes in 

the milk as well as added components such as rennet and starter culture to form volatile 

compounds.  Some of these products contribute to the overall flavor of the cheese, which  

is determined by not only whether or not certain compounds are found in the product but 

also by the proportion at which it is present compared to other compounds (Fox and 

Wallace 1997).   

The complex nature of cheese makes the monitoring of aroma compounds 

produced by specific bacterial strains very difficult, especially when alterations in 

important intrinsic parameters like pH, redox, salt, and lactate levels are considered.  If 

conducting research with natural cheese, blocks of each treatment would be required and 

the aroma compounds contributed by any specific bacteria would be hard to distinguish 

from other sources. To overcome this problem, a Cheddar cheese model system was 

developed that allows for the alteration of parameters important to both flavor production 

and bacterial growth (Diaz-Muniz and others 2006).  Cheddar cheese extract (CCE) is 

essentially the aqueous phase of cheese and it is hypothesized that the microorganisms 

contributing to the flavor of cheese utilize components in this phase.  The CCE can be 

inoculated with the bacterium of interest and grown under very specific conditions while 

monitoring the effect of that bacterium on aroma production.   

The hypothesis of this study is: 
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Lactococcus lactis incubated in CCE, adjusted to mimic LF and FF 

conditions, will produce different volatile headspace (HS) and metabolite 

profiles. 

The research aims addressed in this thesis are: 

1. Characterization of volatile compounds in the HS of both LF and FF CCE 

inoculated with Lactococcus lactis using solid phase micro-extraction (SPME) 

gas chromatography mass spectrometry (GC-MS). 

2. Characterization of small molecule metabolites in the bacteria and the media 

using metabolomics techniques coupled with GC-MS. 
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LITERATURE REVIEW 

Cheddar Cheese Flavor 
 

Flavor production in Cheddar cheese occurs primarily during the ripening stage of 

the cheese making process.  During the ripening stage, key components of the cheese are 

broken down to produce different flavor compounds.  This process occurs as a result of 

both added components, such as starter cultures and rennet, and components not 

intentionally added such as non-starter lactic acid bacteria (NSLAB) and native enzymes 

of the milk system.  Key flavor precursors include proteins, fats, citrate, and residual 

lactose.  Flavor development in cheese results from a combination of microbial and 

biochemical activities that lead to the formation of a heterogeneous mixture of volatile 

and nonvolatile flavor compounds (Fox and Wallace 1997).  This process takes time and 

is dependent on intrinsic and extrinsic factors including temperature, redox potential, pH, 

and salt/moisture (S/M) (Fox and others 2000).    

The characteristic Cheddar cheese flavor has not been attributed to a single 

compound; rather it is a result of a balance between a variety of flavor compounds in the 

cheese.  This has been termed the “component balance theory” which states that the 

Cheddar cheese flavor comes from the correct proportion or balance of all the flavor 

compounds in the Cheddar cheese (Mulder 1952).  To date, there has not been a 

successful synthetic recreation of the Cheddar cheese flavor, which indicates its 

complexity.  

Although the overall desirable flavor of Cheddar cheese has not been defined in 

exact chemical makeup, the characterizations of off flavors have been identified with 
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moderate success.  The off flavors arise due to a disproportional amount of certain 

compounds in the cheese.  For example, bitterness mainly arises due to an increase in 

hydrophobic peptides, rancidity arises due to fatty acids, and fruitiness is due to ester 

formation (Fox and others 2000). 

 
Low-Fat Cheddar Cheese Flavor 

Low-fat cheese has a characteristic lack of desirable flavor intensity when 

compared to its FF counterpart.  Instead, the flavor profile of LF cheese is dominated by 

off flavors, characterized as bitter, meaty, brothy, unclean, and barnyard like (Banks et al 

1992).  These off flavors are likely due to an imbalance of flavor compounds (Mistry 

2001).  Three proposed theories explain the loss of characteristic FF Cheddar flavor in 

the LF product.   

The first theory proposes starter culture physiology and the resulting metabolic 

end product profiles are the same in all cheeses, but sensory perception of those 

metabolites is altered by differences in the physico-chemical environment (e.g. fat, 

moisture, or S/M values).  

Research has shown that fat in food plays an important role in the delivery of 

flavor (Li and others 1997; Prindiville and others 2000; Roberts and others 2003; 

Carunchia Whetstine and others 2006).  Most flavor compounds are classified as 

nonpolar and hydrophobic.  Being classified as such, flavor compounds tend to associate 

with the fat portion in food systems (Relkin and others 2004). Van der Walls and 

hydrophobic interactions characterize the interactions between fat and hydrophobic flavor 

compounds (Plug and Haring 1993).   
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Recent research conducted by Carunchia Whetstine and others (2006) indicates 

that the aroma compounds in Cheddar cheese are present more in the aqueous phase of 

the cheese rather than the fat phase.  In this study fat was removed from Cheddar cheese, 

using a novel process, and the aroma compounds of both the remaining cheese and 

removed fat were tested.  The results showed that aroma compounds were present more 

in the cheese than the fat indicating that the fat does not play as critical a role in binding 

aroma compounds as previously thought. 

Each flavor compound has different physical and chemical properties and only 

those compounds that are present in a high enough concentration to stimulate olfactory 

receptors are above sensory threshold and therefore sensed by the consumer (Carunchia 

Whetstine and others 2006).  During the mastication process, the release of flavor and 

thus the sensory perception of aroma compounds are dependent on the rate of release 

from the cheese matrix, which is influenced by the fat content (Delahunty and others 

1996).   An increase in fat, holding the flavor compound concentration constant, would 

increase the sensory threshold due to the added interactions between flavor and fat.  

These interactions decrease the available amount of flavor in the HS of the sample and 

therefore a lower concentration of flavor compounds is needed to elicit a similar sensory 

threshold in a LF product due to the decreased availability of fat flavor interactions 

(Carunchia Whetsine and others 2006).  

The second theory proposes microbial physiology itself, and thus overall 

metabolism, is altered by differences in the physico-chemical environment in ways that 

affect the production of flavor and aroma active metabolites.   

The change in the physico-chemical environment of LF cheese could alter the 
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overall metabolism of the starter culture, which would in turn alter the proportion of 

flavor compounds of the final product.  Thus, any difference in the proportion of flavor 

compounds found in the FF and LF cheeses would contribute to the differing flavor 

profile between the two products.  Any differences in metabolic activity of the starter 

culture in FF versus LF cheese would likely be due to the increase in the moisture and the 

reduction of the S/M in the LF cheese when compared to the FF cheese.  Table 1 

demonstrates the differences between FF and LF Cheddar cheese physico-chemical 

environment conditions. 

Research conducted by Milo and Reineccius (1997) showed a difference in the 

proportions of flavor compounds between FF and LF Cheddar cheese.  They found that 

the meaty/brothy off-flavor of the LF Cheddar cheese was caused in part due to the 

increased amounts of methional, furaneol, and especially homofuraneol.  They proposed 

that this change came about due to the increased bacterial growth as a consequence of 

increased moisture. 

 
Table 1 Differences of full-fat and low-fat Cheddar cheese  
 Full-fat Low-fat 
Moisture (%) 37.0 50.3 
Fat (%) 33.8 7.00 
Salt (%) 1.76 1.85 
Salt in moisture (%) 4.75 3.68 
pH 5.26 5.21 

*Values were taken from the analysis of full-fat and low-fat Cheddar cheese used in 
Cheddar cheese extract preparation 
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The third theory proposes the physico-chemical environment of LF cheese may 

produce major changes in the gross microbiology of cheese. 

Broadbent (2009) showed that there was a difference in the growth of both starter 

culture and NSLAB in FF and reduced-fat and LF Cheddar cheeses.  The growth of the 

starter in the reduced-fat and LF cheeses showed signs of stability up to 3 months before 

showing signs of decline, while the starter cultures in the FF had declined by at least two 

orders at 3 months.  The growth of the NSLAB in the LF cheese reached levels of 106 by 

six weeks while in FF cheese these levels were not attained by the 3 to 6 month time 

period.  The difference in the growth of both the starter culture and the NSLAB in the FF 

and LF Cheddar cheese are most likely due to the differences in the environment shown 

in Table 1.  The difference in the growth of both the starter culture and the NSLAB in the 

FF versus the LF cheese would likely result in a difference in the metabolism of the 

microorganisms and consequently a shift in the flavor compounds.   

  The most likely scenario is that all three of these effects play a role in the 

development of differences in FF and LF Cheddar cheese.  The microbial growth of both 

the starter cultures and the NSLAB are affected by the alteration of the environment 

found in LF cheese leading to an increase in growth and possible changes in metabolic 

activity.  The changes in growth lead to an alteration in the proportion of the flavor 

compounds found in the LF cheese when compared to the FF cheese due to alteration of 

metabolic activity.  To further complicate the problem, fat, which may act to mask off 

flavors in FF cheese, is replaced with water in LF cheese. The reduction of fat decreases 

the flavor threshold of flavor compounds, making potentially undesirable compounds 
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perceived by the consumer.  This increased perception of undesirable compounds leads 

to an unsatisfactory sensory experience for the consumer. 

  
Lactococcus lactis Characteristics 
 

Lactococcus lactis is a common starter culture that is added to milk in the 

production of Cheddar cheese.  Some of the benefits of L. lactis strains include rapid acid 

production, salt sensitivity, and ripening activity (Fox and others 2000).  Steady acid 

production throughout the cheese making process ensures the suppression of undesirable 

bacterial growth (Beresford and Williams 2004). L. lactis growth in an hour reaches 

levels greater than 108 cfu /g.  As cheese ripens, the L. lactis levels decrease to levels of 

107 to 104 cfu/g (Beresford and Williams 2004).    

Hassan and Frank (2001) describe the characteristics of L. lactis. L. lactis is cocci 

and usually occurs in chains.  They are homofermentive when grown in milk with 95% of 

their end products being lactic acid.  Growth occurs at 10ºC but not at 45ºC.  They are 

weakly proteolytic and can use milk proteins and lactose for growth.  They hydrolyze 

milk casein by the extracellular proteinase PrtP.  In addition, they can produce acid from 

lactose, galactose, maltose, and ribose and can grow in the presence of 4% salt. 

 
Flavor Production of Lactococcal Strains 
 

Starter cultures in Cheddar cheese have the primary role of reducing the pH by 

producing lactic acid from lactose.  The production of flavor compounds by starter 

cultures occurs as a result of the major biochemical events during the cheese ripening 

process.  These processes are categorized into four groups: (1) glycolysis of residual 

lactose and further catabolism of lactic acid, (2) catabolism of citrate, (3) lipolysis and the 
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subsequent catabolism of free fatty acids, and (4) proteolysis and the catabolism of 

amino acids (Fox and others 2000).  The importance of starter cultures role in the 

development of flavor was shown by Reiter and others (1966) where the absence of 

Cheddar flavor was shown in glucono delta-lactone acidified cheese and typical Cheddar 

cheese flavor was shown in starter culture only cheese. 

 
Lactose and citrate metabolism 

The fermentation of lactose by L. lactis primarily produces lactate, which is 

accomplished via glycolysis.  Lactate contributes to acidic flavor, especially in young 

cheeses (McSweeney and Sousa 1999).  The branch point of potential flavor compounds 

in the production of lactate is pyruvate, a metabolic intermediate.  Potential flavor 

compounds produced from pyruvate include acetoin, formate, acetaldehyde, ethanol, and 

acetate.  Research conducted by Melchiorsen and others (2000) showed that the 

production of formate, acetate, and ethanol by L. lactis was dictated by the concentration 

of lactose present.  Initially the lactose concentration is high enough to promote homo-

fermentation of lactose to L-lactic acid, but as the concentration of lactose decreases 

during the ripening, the production of formate, acetate, and ethanol along with L-lactic 

acid occurs.  

Lactococcal strains that are citrate positive have the ability to metabolize citrate in 

the presence of a fermentable sugar to acetate, diacetyl, acetoin and 2, 3-butanediol (Fox 

and others 2000). According to Curioni and Basset (2002) these compounds have been 

identified as contributing flavor compounds to Cheddar cheese.  Citrate is a minor 

constituent of milk with a majority of it lost in the whey.  Cheddar cheese contains 0.2%  
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Table 2. Some potential flavor byproducts of lactose and citrate metabolism 
Compound Flavora 

Acetaldehyde Sweet, pungent 
3-Hydroxybutan-2-one Sour milk 
Butane-2,3-dione (diacetyl) Cheesy, caramel 
Acetic acid Vinegar 
Ethanol Dry dust 

a(Curioni and Basset 2002) 
 
 
to 0.5% (wt/wt) citrate (McSweeney and Fox 2004).  Table 2 contains some potential 

aroma compounds resulting from fermentation of lactose and citrate. 

 
Fatty acid metabolism 

Fatty acids in milk come primarily in the form of triacylglycerols.  In order for the 

fatty acid to contribute to the flavor of the cheese it first be acted upon by a lipase or 

esterase to release the fatty acid from the glycerol backbone.  Lipolytic agents come from 

6 sources: milk, rennet, starter bacteria, secondary starter microorganisms, NSLAB, and 

exogenous lipase preparations (Collins et al 2004).   Milk fat has a high proportion of 

fatty acids that are either short or medium length that when liberated contribute directly 

to the flavor of the cheese (McSweeney and Sousa 1999).  Fatty acids can be substrates 

for further catabolic reactions, which produce methyl ketones, secondary alcohols, 

lactones, ethyl esters, aldehydes, acids, and alcohols.  Table 3 lists some potential flavor 

compounds and their respective flavor and Figure 1 shows the potential pathways 

followed to make these flavor compounds. 
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Table 3. Some potential flavor byproducts of fatty acid metabolism 
Class Compound Flavora 

Free fatty acid Butanoic acid Rancid, cheesy 
 Hexanoic acid Pungent 
 Octanoic acid Wax, goat, musty 
Methyl ketone Heptan-2-one Fruity, foral, musty 
 Propan-2-one Fruity, foral, musty 
 Nonan-2-one Fruity, foral, musty 
Secondary alcohol Propan-2-ol  
 Butan-2-ol  
 Octan-2-ol  
Lactone δ-Decalactone Peachy, coconut 
 γ-Decalactone Coconut 
Ethyl ester Ethyl butyrate Bubble gum, fruity 
 Ethyl hexanoate Young cheese 
 Ethyl octanoate Fruity 
Aldehyde Pentanal Chemical 
 Heptanal Soapy 
 Nonanal Green, fatty 
Alcohol Propan-1-ol Sweet (candy) 
 Pentan-1-ol Fruity 

aCurioni and Basset 2002 
 
 
Proteolysis and the catabolism of amino acids 

Proteolysis in ripening cheese comes primarily from the following sources: 

coagulant, indigenous milk proteases, starter culture proteases, and NSLAB proteases.  

Initially in the cheese making process, the primary hydrolysis of milk proteins is 

accomplished by the action of the coagulant and to a lesser extent by the native milk 

enzyme, plasmin.  The products of the initial hydrolysis are large peptides which are 

further broken down by action of the coagulant protease and enzymes contributed by the 

starter and NSLAB.  Proteinases and peptidases of the starter culture and NSLAB further 

hydrolyze the peptides into shorter peptides and amino acids (McSweeney and Sousa 

1999).   
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Figure 1. Potential pathways of fatty acid flavor development 
Highlighted compounds contribute to cheese flavor. 
 
 

Amino acids are further metabolized to form additional compounds that 

contribute to the flavor.  According to a review by Yvon and Rijnen (2001), aromatic 

amino acids (phenylalanine, tyrosine, tryptophan), branched-chain amino acids (leucine, 

isoleucine, and valine), and methionine are major precursors to important cheese flavor 

compounds.  There are 2 mechanisms by which amino acids are degraded by lactic acid 

bacteria, the first mechanism involves the cleaving off of amino acid side chains 

catalyzed by amino acid lyases, and the second method involves amino acid 

aminotransferases (Yvon and Rijnen 2001).    

The use of amino acid lyases in L. lactis is primarily used in the degradation of 

methionine, although this is not believed to be the primary method of the degradation 

methionine in this organism (Yvon and Rijnen 2001).  The two enzymes exhibiting lyase 
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activity in L. lactis are cystathionine-β-lyase and cystathionine-γ-lyase (Curtin and 

McSweeney 2004). cystathionine-β-lyase catalyzes the conversion of cystathionine to 

homocysteine, pyruvate, and ammonia, while cystathionine-γ-lyase catalyzes the 

conversion of cystathionine to cysteine, α-keto butyrate, and ammonia (Curtin and 

McSweeney 2004).  

Aminotransferases catalyze the transfer of the amino group from an α-amino acid 

to an α-keto acid (Curtin and McSweeney 2004).  Often the α-keto acid acceptor is α-

ketoglutarate, which is transformed to glutamate upon reaction with an amino acid (Yvon 

and Rijnen 2001).  Aminotransferases are pryridoxal-5’-phosphate dependent enzymes 

that have broad substrate specificity and can catalyze reverse reactions (Weimer and 

others 1999).   

There appears to be three types of aminotransferases found in L. lactis bacteria, 

branched chain amino acid aminotransferase and aromatic amino acid aminotransferase 

(Yvon and Rijnen 2001). branched chain amino acid aminotransferase uses the following 

substrates Ile, Leu, Val, and Met, while aromatic amino acid aminotransferase uses Leu, 

Tyr, Phe, Trp, and Met.  The resulting α-keto acid products are further degraded to form 

potential flavor compounds.  Table 4 contains some potential flavor compounds that 

could originate from amino acids. 

 
Environmental Conditions 

The intent of this study is to monitor the aroma compound production of L. lactis 

in CCE under FF and LF conditions.  The variables that will differ between the FF and  
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Table 4. Some potential flavor compounds from amino acid metabolism 
Class Compound Flavora 

Aldehyde 3-Methyl butanal Slightly caramel, nutty 
 2-Methyl propanal Floral 
Alcohol 3-Methyl-1-butanol Alcoholic, green 
 3-Methyl-2-buten-ol Cheese, fruity, green 
 Phenylethanol Rosey 
Acid 1-Methyl propanoic acid  
 3-Methyl butanoic acid Swiss cheese 
Other Indole stable 
 Skatole Fecal 
 2-Isopropyl-3-

methoxypyrazine 
Earthy 

 Methional Baked potato 
 Methanethiol Sulfury 
 Dimethylsulphide Cabbage like 
 Dimethyltrisulfide Putrid 
 Dimethyltetrasulfide Putrid 
 p-Cresol Cowy, barny 

aCurioni 2002 
 

the LF CCE will be fat and S/M.  The following paragraphs describe the effects on flavor 

caused by altering the ripening temperature, S/M, and fat level. 

 
Ripening temperature 
 

Temperature is a major factor in the rate of biochemical reactions including 

enzymatic reactions.  The growth of the starter cultures is also dependent on ripening 

temperature.  The temperature used in the ripening of the cheese is a tradeoff between the 

growth of starter culture (good) and the growth of spoilage bacteria (bad).  The elevation 

of temperature can be used as a method to accelerate ripening, but risks skewing 

microbial population dynamics, as indicated above.  McSweeney and others (1996) 

showed that for Cheddar cheeses ripened at 8, 12, and 16ºC, the 16ºC ripened cheese 

exhibited the highest flavor score. 
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 Salt level 

The use of salt as a means of food preservation dates to pre-historic times.  The 

S/M in cheese plays several critical roles in the development of the cheese.  The added 

salt helps to determine the final pH of cheese by reducing starter culture metabolism.  

The salt also affects the overall flavor and texture by influencing proteolysis (Guinee and 

Fox 2004).   

Lawrence and others (1984) have suggested a S/M value of 4% to 6% in the 

grading of premium New Zealand Cheddar for long term ripening.  The increase of water 

associated with the decrease in fat in LF cheeses causes a reduction in the S/M to be as 

low as 3.5%.  Mistry and Kasperson (1998) studied the effect of varying salt 

concentrations of reduced-fat cheeses on bacterial growth, pH, and proteolysis during the 

ripening process.  They made reduced-fat Cheddar cheese with 2.7%, 3.7%, and 4.5% 

S/M and allowed them to ripen for 24 weeks testing the pH, microbial count, and 

proteolysis at 1, 4, 12, and 24 weeks. Their results showed a decrease in the microbial 

count of all varying level of S/M during the 24 week ripening period with a greater 

decrease in the microbial count in the 4.5 compared to the 2.7 and 3.7% S/M.  The pH of 

the cheese was also affected by the salt concentration.  The pH was lower in the 2.7% 

S/M and increased with an increase in salt, indicating an increase in the microbial activity 

in the low salt conditions.   

In LF cheese the S/M contained in the final product is decreased due to the 

increase in water to the product.  Salt is used as a method of keeping the bacterial growth 

in the cheese to a desirable level.  In LF cheese the growth and metabolic activity of the 
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starter culture as well as NSLAB maybe accelerated.  Off flavors can be observed 

potentially as a result of the increased bacterial growth and activity.  

 
Volatile and Metabolite Molecule Identification  

The following paragraphs detail the methods that were used in the identification 

of both the aroma volatiles and the small molecules.  In both methods the detection 

method is the same but the extraction and derivatization processes differ. 

 
Headspace solid phase micro-extraction  

In a review of applications of SPME Kataoka and others (2000) describe SPME 

as a solvent less extraction method in which a silica fused fiber is placed above the HS of 

the sample to trap volatiles.  The volatile compounds then partition to the fiber until 

equilibrium is achieved amongst the three phases in the system, fiber, HS, and sample or 

a predetermined amount of time has elapsed.  The fiber is then removed and inserted into 

the analytical instrument, such as liquid chromatograph or GC.  The use of SPME can 

greatly reduce the sample preparation time as well as eliminate potentially toxic solvents 

used to isolate compounds of interest as compared to other sample preparation techniques 

such as liquid-liquid or solid phase extraction.  A limiting factor in the use of SPME in 

volatile analysis is the selectivity of the fiber chosen for analysis, as the analytes obtained 

from the sample may not be a complete representative of all the volatile compounds in 

the HS.  The selectivity of different fibers is specific for certain types of compounds 

based primarily on the polarity and size of the compounds of interest.  Polar compounds 

are absorbed by polar fibers and likewise the same is true for nonpolar compounds, which 
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Figure 2. Comparison of polarity and retention of solid phase micro-extraction 
fibers: polydimethylsiloxane (PDMS), carboxen/polydimethylsiloxane (CAR/PDMS), 
divinylbenzene/carboxen/polydimethylsiloxane (CVB/CAR/PDMS), polyacrylate (PA), 
polydimethylsiloxane/divinylbenzene (PDMS/DVB), carbowax/divinylbenzene 
(CW/DVB), carbowax/templated resin (CW/TPR)  

 
 

are absorbed by nonpolar fibers.  In Figure 2, the different fiber types are shown with 

their relative polarity (Kataoka and others 2000). 

The use of HS SPME has been used in the analysis of dairy products. Chin and 

Rosenberg (1997) used HS SPME to compare the HS of FF and reduced-fat Cheddar 

cheeses.  Lee and others (2007) used HS SPME to monitor sulfur containing compounds 

in Cheddar cheese products.  

 
Metabolomics 

Metabolomics is an emerging field of study in which the small organic molecules 

of the system in question can be monitored.  The metabolomic method that was used in 

this study involves a quenching of the cells and media to bring about a halt in cellular 
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processing; this is typically done with methanol (Pieterse and others 2005).  The 

intracellular components of the cell are then extracted from the cells using a chloroform 

solution (Tian and others 2009).  The solution is then centrifuged and the supernatant 

consisting of the methanol is then taken and dried.  In order to volatilize the small 

molecules the dried sample is first subjected to an oximation reagent followed by a 

silylation step (Koek and others 2006).  The sample is then run through a GC-MS to 

separate and identify the metabolites.  Past research has shown that the use of oximation 

and syliation is a powerful tool to derivatize alcohol, aldehyde, acid, and amino groups of 

metabolites (van der Werf and others 2005).   

 
Gas chromatography mass spectrometry  
 

GC-MS is a method to first separate the analytes of interest by use of the GC, 

followed by the identification of the analytes using MS.  The compounds are separated in 

a capillary column in which the inside has been coated with a liquid stationary phase.  

The compounds are introduced into the column and a flow of gas pushes the compounds 

through the column.  The separation occurs as the analytes that have an increased affinity 

for the stationary phase will move slower than the compounds with a decreased affinity 

for the stationary phase.  The MS detects the compound by fragmenting the compound 

and measuring the produced fragments.  The peaks detected are then identified by 

comparison to authentic standards and libraries.  

 
Automated mass spectral deconvolution and identification system  

Automated Mass Spectral Deconvolution and Identification System (AMDIS) is a 

freely available computer program that extracts spectra of individual components in a 
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GC/MS data file and identifies target compounds by matching the spectra to that of the 

spectra in a target library.  AMDIS works by conducting these four steps: noise analysis, 

component perception, deconvolution, and compound identification (Stein 1999). 

 
SpectConnect 
 

SpectConnect is a freely available service found at the website 

http://spectconnect.mit.edu.  An example of the use of SpectConnect is given by 

Styczynski and others (2007).  This service tracks potential known and unknown 

metabolites or flavor compounds across replicates and different sample conditions 

without the use of reference spectra.  SpectConnect compares every spectrum in each 

sample to each spectra in every other sample.  Compounds are conserved across the 

replicates and different treatments by having similar mass spectrum and retention times.  

Stycznski and others (2007) hypothesized that the important compounds will be 

conserved across most or all replicates, while the noise will not be conserved.  Figure 3 

shows the process in which SpectConnect finds potential biomarker candidates that 

would otherwise not be analyzed due to a deficient library.  

SpectConnect requires the use of AMDIS to deconvolute the GC-MS 

chromatogram and a .ELU file is downloaded to the site.  SpectConnect also requires that 

replicates for each condition be performed.  The output obtained from the site includes 

retention time, relative abundance, integrated signal, and base peak for each compound 

analyzed.   
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Figure 3.  A representation of the SpectConnect process (Styczynski and others 2007). 
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MATERIALS AND METHODS 

 Cheddar Cheese Extract Make Procedure  
 

Cheddar cheese extract was produced by extracting the water soluble portion of 

the cheese matrix.  The cheese used as the starter material for the CCE in this project was 

a LF Cheddar cheese variety produced in the Gary Haight Richardson Dairy Products 

Laboratory at Utah State University.  The composition of the cheese can be seen in Table 

1.  The cheese was ripened to a point at which the lactose was below detectable limits, 

which took 6 weeks, to produce a medium that would imitate ripened cheese. 

The first step to make the CCE was to shred the ripened cheese and add it along 

with distilled water to a steam jacketed vat in a 1:2 ratio of cheese to water.  The mixture 

was then heated slowly to 50ºC with constant stirring to prevent burning and held or 20 

minutes.  The cheese came together and formed a dough like structure and was then 

removed from the mixture and discarded.   

The liquid portion then went through a series of filtration steps.  The first step was 

a diafiltration step using an ultrafilter, where the permeate was kept and the retentate was 

returned back to the filtration system, where with added distilled water it continued to be 

filtered until the permeate appeared to be mostly water.  The pore size of the ultrafilter 

excluded any large molecules such as proteins from entering the permeate while allowing 

small molecules such as lactose to pass.  The permeate from the ultrafiltration step was 

then concentrated using reverse osmosis, where the water was removed as the permeate 

and the retentate cycled through the filter to further concentrate the extract.  This process 

continued until the reverse osmosis membranes reached maximum capacity due to the 
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decrease in water.  The retentate was then collected and frozen.  The reverse osmosis 

process concentrated the CCE to 1.6 X concentration.  Figure 4 outlines the CCE make 

procedure. 

 
Milk Fat Globular Membrane Make Procedure 
 

Milk fat globular membrane in the original cheese was lost as a result of the 

filtration process during the CCE production.   MFGM was isolated from buttermilk 

produced at West Point Dairy Products, LLC (Hyrum, Utah).  The isolation of MFGM 

was accomplished using a method similar to Sachdeva and Buchheim (1997).  The 

buttermilk was heated to 36.5ºC then a 20% (wt/wt) solution of calcium chloride in water 

was added to the buttermilk in the amount of 0.1% (wt/wt) of the total buttermilk.  The 

mixture was then incubated for 30 minutes at 36.5ºC and rennet was added at 

 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Cheddar cheese extract make procedure. 

 
Shred six week old low-fat Cheddar cheese 

 
Add cheese to water in vat 

(2:1 water to cheese ratio (w/w)) 
 

Slowly heat up to 50ºC with constant stirring 
 

Hold at temperature for 20 minutes with continued stirring 
 

Strain the liquid to remove any solid cheese material 
 

Filter liquid through ultrafilter reserve permeate 
 

Reverse osmosis to further concentrate the CCE 
 

Freeze 
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concentration of 0.03% (wt/wt) to the mixture.  The curd was allowed to settle 

overnight at refrigeration temperature.  The top layer was siphoned off and reserved.  

Distilled water was added to the curd and the top layer was again siphoned off after the 

curd had sufficiently settled.  The siphoned top layers were then filtered through a 100K 

filtration unit produced by Millipore (Billerica, MA).  The retentate was concentrated and 

subjected to a 2X difiltration process to remove excess lactose.  The retentate was then 

freeze dried and stored in a -80ºC freezer.  Figure 5 shows the make procedure of the 

MFGM. The amount of MFGM to add to both the FF and LF samples were determined 

from the amount of fat in the original cheese and the calculations can be found in Table 5. 

 
 
 
  
 
  

 

 

    

  

 
 
 
 
  

 
Figure 5. Milk fat globular membrane make procedure. 
 

 
Heat buttermilk to 36.5ºC 

 
Addition of calcium chloride 

(0.1% of buttermilk as a 20% CaCl solution) 
 

Allow to stand for 30 minutes 
 

Add rennet 
(30 ml rennet/100 L buttermilk) 

 
Allow curd to settle overnight at refrigeration temperatures 

 
Siphon off top layer 

 
Wash curd with distilled water and repeat siphoning after sufficient settling 

 
Ultra-filter top layer 

 
2X diafilter 

 
Freeze dry 
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Table 5. Milk fat globular membrane calculations in full-fat and low-fat samples 

 

 

 

 

 

 

 

 

*Percentages were taken from Keenan and Mather (2006). 

 
Cheddar Cheese Extract Preparation for Runs 
 
 The CCE media is primarily made up of the 1.6 X CCE and distilled water.  Each 

run had 500 ml of 1.6 X CCE and 300 ml of distilled water.  The dried MFGM was added 

to half of the distilled water (150 ml) and autoclaved at 237ºF for 10 min.  The salt, lactic 

acid, and lactose was added to the remaining distilled water (150 ml) and mixed.  The 

500 ml of 1.6 X CCE was then added to the salt, lactic acid, lactose, and water mixture 

and sterilized by passage through a 0.45 micron filter (Thermo Fisher Scientific, 

Waltham, MA).  The MFGM mixture was then added to the filtered mixture to make the 

final CCE media.  The CCE media was then added to the fermenters and the pH was then 

adjusted to 5.1 and maintained throughout the fermentation. 

 
Starter Culture Preparation 
 
 Lactococcus lactis M70 used in this study was obtained from Danisco and was 

 Low-fat Full-fat 
%fat in cheese 6% 33% 
Fat amount in 1000 g cheese 60 g 330 g 
Total phospholid (0.8% of fat is 
phospholipid*) in 1000 g cheese 0.48 g 2.64 g 

PL associated with the MFGM (65% of PL 
associated with MFGM*) in 1000 g cheese 0.312 g 1.716 g 

Total MFGM (Composition of MFGM 25% 
PL and 70% protein*) in 1000 g cheese 1.1856 g 6.5208 g 

MFGM % in cheese* 0.11856% 0.65208% 
Amount of  cheese equivalent to 1 liter of 
CCE 2000 g 2700 g 

MFGM % in CCE 0.237% 1.76% 
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chosen for use in this study due to its use in a 2006 LF platform project (Drake and 

others 2010).  A stock culture was maintained frozen at -80ºC and working cultures were 

prepared by adding 0.1% of the frozen culture to M17 lactose broth and incubating at 

30ºC for 24 hours.  0.1% of the M17 lactose broth was then transferred to UHT milk and 

incubated for 24 hours at 30ºC, then used to inoculate (2%, vol/vol) 50 ml of 1 X CCE 

with 2% lactose and incubated for 24 hours at 30ºC.  The inoculated CCE was then 

centrifuged at 3000 X G and the CCE was drained off.  The remaining bacterial pellet 

was then re-suspended in 0.1% peptone buffer prior to inoculation of the CCE in a 

Biostat B Plus fermenter (Sartorius Stedim Biotech, Aubagne, France).  

 
Experiment Design 
 
 Two cheese environments were created, LF treatment (LFT) and FF treatment 

(FFT).  The S/M and MFGM level were adjusted in the media to reflect the values in the 

LF and FF cheese environments.  The lactate and pH were also adjusted to that of the 

cheese environment.  Table 6 shows the environmental conditions of the LF and FF 

model. 

 
Table 6. Cheese environmental conditions 
Environmental condition Low-fat model Full-fat model 
S/M (%)a 3.7% 4.75 
MFGM 0.12% 0.88% 
Lactose 0.21% 0.21% 
Lactatea 5500 ppm L-lactate 5500 ppm L-lactate 
 600 ppm D-lactate 600 ppm D-lactate 
Temperature 30ºC  30ºC  
pHb 5.1 5.1 

aReflects typical S/M (at press) and lactate contents (at 3 months) of washed curd low-fat 
and full-fat cheese made and analyzed under the 2006 DMI collaborative low-fat 
platform project (D.J. McMahon and J.L. Steele, pers. comm.)   

bInitial pH; adjusted after lactate addition 
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 Each fermentation took place at 30ºC with a pH of 5.1 maintained over a period 

of 2 weeks with sampling at days 0, 1, 7, and 14.  With each LF and FF replicate, a low-

fat control (LFC) and FF control (FFC) at each time point were also kept at 30°C during 

the duration of the fermentation with HS sampling taking place simultaneously with the 

treatment samples.  Each condition was replicated in triplicate making a total of six batch 

runs. 

 
Cell Recovery and Enumeration 
 

Recoverable colony forming units were determined from each treatment at 0, 1, 7, 

and 14 days. Samples were serially diluted with sterile phosphate buffered saline and 

plated (0.1 ml), in duplicate, on M17 agar.  The plates were incubated anaerobically at 

30ºC for 48 hours.  Colonies were counted from plates with counts between 30 and 300 

colonies to calculate the total colony forming units in the CCE for each treatment at the 

specified time point. 

 
Headspace Solid Phase Micro-Extraction Gas  
Chromatography Mass Spectrometry Methods 
 

The CCE HS was analyzed using the following procedure:  5 ml of CCE liquid 

that had been centrifuged was added to a 20 ml HS vial along with an internal standard, 

2-methyl-3-heptanone; the vial was then capped and equilibrated for 25 minutes at 45ºC.  

Prior to testing, the vials were placed in a 300ºC oven overnight to drive off any 

contamination.  A 3-phase DVB/Carboxen/PDMS (Sigma Aldrich, St. Louis, MO) was 

inserted into the HS and the extraction of volatiles took place for 45 minutes at a 

temperature of 45ºC.  After extraction the fiber was inserted into the injection port 
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(250ºC), and was left for 10 minutes to fully desorb the metabolites.  In all cases the 

gas chromatography apparatus used was a GC-2010 Shimadzu (Kyoto, Japan) with a DB-

5ms column (length 30m, thickness 0.5µm, and diameter 0.25µm) (Agilent Technologies, 

Santa Clara, Ca) using splitless injection.  Carrier gas was helium with a flow rate of 25 

mL/min.  Oven temperature program was as follows:  hold at 40ºC for 3 minutes, 

increase temperature at a rate of 10ºC/min until 90ºC, increase temperature at a rate of 

5ºC/min until 200ºC hold at 200ºC for 10 minutes, increase temperature at a rate of 

20ºC/min until 250ºC hold at 250ºC for 10 minutes.   

Mass spectrometry (MS) analysis was carried out using a QP 2010S Shimadzu 

MS (Kyoto, Japan).  Electron impact ionization mode was used with the ionization 

voltage set at 70 eV.  The ion source temperature was 220ºC.  Data acquisition was 

performed in both scan and SIM mode 10 times per second alternating between the 2 

methods.  The scan method scanned between the range of 33-200 m/z.  The target ions of 

43, 57, 83, 114, and 142 m/z were used because they represent the target masses for 

aroma compounds associated with LF cheese.   

The analysis of the GC-MS data was performed using the deconvolution software 

AMDIS.  The spectra of peaks were compared to the NIST database to identify the 

compounds analyzed and the retention indices were cross referenced to those in the 

literature to further verify compound identity.  The program SpectConnect was used to 

conserve unidentified compounds across replicates and conditions.  The peak areas were 

normalized to that of the internal standard 2-methyl-3-heptanone.   

A variable reduction was performed to the high number of compounds detected in 

the HS analysis.  The reduction was accomplished by comparing the average 
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concentration of each compound of the treatments to their respective controls.  If the 

values did not fall in their respective standard error that compound was retained.  This 

served as a method of eliminating the compounds that were not produced in the presence 

starter culture. 

 
Metabolomic Methods 
 

Metabolomic methods were employed to monitor changes in the concentration of 

small molecules within both the CCE and the bacteria.  To measure the metabolites in the 

bacteria the following procedure was followed: A 12 ml sample of CCE was collected 

from each batch run at days 0, 1, 7, and 14.  Each sample was centrifuged for 10 minutes 

at 3000 X G at a temperature of 4ºC.  The liquid was reserved for HS and CCE 

metabolite analysis.  A 10 ml aliquot of 50 mM phosphoric buffer was then added to the 

pellet and vortexed.   After a centrifugation under the same conditions as the previous 

centrifugation, the supernatant was discarded and intracellular components of the bacteria 

extracted by adding 1.5 ml methanol at -45ºC, 0.75 ml chilled distilled water and 1.5 ml 

of -45ºC chloroform to the pellet.  An internal standard of ribotol was added to the 

sample followed by vortexing and centrifugation.  The supernatant of methanol and water 

was collected and frozen at -80ºC and dried.  The dried sample was derivitized by adding 

40 µl of MOX reagent (Thermo Fisher Scientific, Waltham, MA) and incubating for 90 

min at 40ºC.  Next 70 µl of MSTFA (Thermo Fisher Scientific, Waltham, MA) was 

added to the sample and incubated for 50 min at 40ºC. 
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In order to measure the metabolites in the CCE media the following procedures 

were followed: 100 µl of the reserved sample liquid was taken and the same extraction, 

drying, and derivitization process conducted during the bacterial metabolomics method.  

One µl of sample was injected into the GC-MS apparatus described previously 

under the following conditions:  The injection port was maintained at a temperature of 

280ºC and was splitless.  The column was the same DB-5ms column used in the HS 

analysis.  The carrier gas was helium with a column flow rate of 0.85 ml/min.  The oven 

temperature program began at 70ºC for 5 min and increased up to 280ºC at a rate of 

5ºC/min.  Electron impact ionization mode was used with the ionization voltage set at 70 

eV.  The ion source temperature was set at 200ºC.  Data acquisition was performed in the 

full scan mode (m/z 40-600).    

The raw GC-MS data was both enumerated (i.e., distinguish “true” peaks from 

noise in a chromatogram) and spectrally deconvoluted (i.e., obtain putative pure spectra 

from two overlapping peaks) by use of a freely available program AMDIS (Styczynski et 

al 2007).  Peaks were identified by standards where indicated and by NIST spectral 

database library.  The program SpectConnect was used to conserve unidentified 

compounds across replicates and conditions. The peak areas were normalized to the 

ribotol standard.  The peak areas obtained from each condition were compared for 

similarities and differences using various statistical methods.   

 
Statistical Analysis 
  

All statistical analyses were performed using SAS (v 9.1, Statistical Analysis 

Software, Cary, NC).  All missing values for each analysis (HS and metabolomics) were 
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replaced with half of the lowest value found in their respective data set (Xia and others 

2009).  The principal component analysis (PCA) was performed using Proc Princomp, 

while further analysis of compounds was accomplished via repeated measures ANOVA 

using Proc Mixed.  Replicate, treatment, day, and treatment*day were included in the 

model as fixed effects with day as the repeated measure.  The fixed effects were 

considered significant if p-values were below 0.05.  Covariance structure was 

autoregressive (1)[AR(1)].  The means were then compared using differences of least 

square means.  Differences in the means were determined significant if the Tukey 

adjusted p-value were less than 0.05. 
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RESULTS AND DISCUSSION 

 
 

Cell Recovery and Enumeration 
 
 Figure 6 shows the averaged growth curve of the bacteria in both the LF and FF 

CCE from day 0 to 14.  The growth during the fermentation process was minimal with a 

slight peak at day 7 for both the FF and LF samples.  The bacterial counts in the CCE 

during the fermentation process are similar to the counts in Cheddar cheese during the 

ripening process. 

 The growth of bacteria in the LF sample was expected to be higher than the FF 

sample due to the difference in the salt content.  Like most model systems the CCE 

model system is not perfect and is lacking the protein and fat matrix found in cheese.  

During the make procedure of CCE, water soluble compounds that could be of interest to 

bacterial growth and the aroma HS could have remained with the retentate during the 

ultrafiltering process.  The results found represent the bacterial metabolism within CCE 

and may or may not represent the bacterial metabolism in LF and FF Cheddar cheese.  

 The ripening of Cheddar cheese can take anywhere from 3 months to 2 years 

typically at a temperature of 8 to 10°C (Singh and others 2003).  The temperature of 

incubation was increased to 30°C in this study to accelerate the activity of the bacteria 

and enable the visualization of trends in aroma and metabolite profiles in the media.  This 

rise in temperature could cause a shift in the aroma and metabolite profiles away from 

Cheddar cheese. 
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Figure 6. Average growth curve during fermentation (n=3) 
 
 
Headspace Solid Phase Micro-Extraction Gas  
Chromatography Mass Spectrometry 
 
 Initial output contained 109 potential compounds that were detected in the HS of 

the samples. The variable reduction procedure reduced the compounds down to 14.  

Table 7 shows those compounds along with the CAS identification number, RI and the 

odor generally associated with each compound.  Figure 7 shows the molecular structure 

of the retained compounds.  Figure 8 shows an example of the chromatogram of a LFT 

and FFT run at day 14.  There is little difference between the FFT and the LFT 

chromatogram.  Tables A1-4 contain the average concentration as well as the standard 

deviation of each compound.   
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Table 7.  Retained compounds from headspace analysis 
 CAS 

Number RI Odorab 

Propan-2-one 67-64-1 552 Wood pulp, haya 

3-Methylbutanal 590-86-3 653 Green, maltya 

3-Methylbutanol 123-51-3 737 Green, alcoholica 

Heptan-2-one 110-43-0 890 Fruity, fatty, spicya 

Heptanal 111-71-7 902 Soapya 

2,6-Dimethylheptan-4-ol 108-82-7 949 mild fresh ethereal fermented yeastyb 

Benzaldehyde 100-52-7 960 strong sharp sweet bitter almond 
cherryb 

Dimethyl trisulfide 3658-80-8 968 Sulfurous, cabbagea 

2-Ethylhexan-1-ol 104-76-7 1025 citrus fresh floral oily sweetb 

p-Cymene 99-87-6 1027 Fresh citrus terpene woody spiceb 

2-Phenylacetaldehyde 122-78-1 1042 Rosey,  stirenea 

Nonan-2-one 821-55-6 1090 Malty, fruitya 

Isothiocyanato 
cyclohexane 1122-82-3 1238 No info 

Undecan-2-one 112-12-9 1294 Florala 

aOdor descriptions from Curioni and Bosset (2002) in cheese using GC-olfactometry 
bOdor descriptions were taken from the website www.thegoodscentscompany.com 
 

Repeated measures ANOVA 

Repeated measures ANOVA showed all of the compounds had a significant 

Treatment and Treatment*Day effect with a p-value less than 0.05 (Table 8).  3-

Methylbutanal, nonan-2-one, and undecan-2-one had an insignificant p-value for the Day 

effect.  The interactions are characterized in the concentration versus time graphs for each 

compound in Figures 9-12. Tables 9-11 show the least square mean values at each time 

period contrasting FFC and FFT, LFC and LFT, and FFT and LFT.  Tables B1-4 show  



 35 
 

Figure 7. Molecular structure of retained compounds 
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Figure 8. Chromatogram of a low-fat and full-fat treatment run at day 14 
 

the least square mean values for each treatment contrasting the separate time points.  The 

compared means were considered significantly different if the Tukey adjusted p-value 

was less than 0.05.    

 
Ketones 

 Propan-2-one, heptan-2-one, nonan-2-one, and undecan-2-one are ketones that 

were retained in Table 7.  Figure 1 shows that fatty acid β-oxidation could be a potential 

source of these ketones.  The graphs of concentration versus time in Figure 9 indicate that 

the fat level in the samples may be a contributing factor in the compound concentration 

for heptan-2-one and nonan-2-one due to the increased concentration in FFC and FFT 

when compared to LFC and LFT.  Each of these compounds has been found in Cheddar 

cheese (Curioni and Bosset 2002).     

Propan-2-one imparts a high wood pulp and hay odor.  The propan-2-one graph 

within Figure 9 shows propan-2-one levels starting out the same for all controls and 

treatments at day 0, as time passed the treatments stayed constant and the controls  
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Table 8. Headspace repeated measures ANOVA p-values from type 3 tests for fixed 
effects 
 Treatment Day Treatment*Day 

Propan-2-one 0.002 <.001 0.004 

3-Methylbutanal <.001 
 

0.546 0.004 

3-Methylbutanol 0.032 0.001 0.005 

Heptan-2-one <.001 0.018 <.001 

Heptanal 0.001 <.001 <.001 

2,6-Dimethylheptan-4-ol <.001 <.001 0.0001 

Benzaldehyde <.001 <.001 0.0022 

Dimethyl trisulfide <.001 0.009 0.016 

2-Ethylhexan-1-ol 0.001 <.001 <.001 

p-Cymene <.001 <.001 0.008 

2-Phenylacetaldehyde <.001 <.001 0.020 

Nonan-2-one 0.001 0.516 0.001 

Isothiocyanato cyclohexane <.001 
 

<.001 
 

<.001 
 Undecan-2-one 0.016 0.882 0.032 

 
 
decreased.  The propan-2-one could be reacting with other compounds in the HS, in the 

treatment samples the propan-2-one levels are being replaced by action of the starter 

culture while in the controls there is no propan-2-one production causing a decrease in 

the propan-2-one levels.  Examining the least square mean values for propan-2-one at 

each time point, there is a significant difference in the propan-2-one levels of FFC and 

FFT sample at day 14 as well as for LFC and LFT at day 7.  There does not appear to be 

a statistical difference between the FFT and LFT samples.  The least square mean values 

for each treatment indicates that there is a change over time in propan-2-one for the FFC 

and LFC samples while there is no significant change in the FFT and LFT over time. 
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Table 9. Headspace tukey adjusted p-values comparing the full-fat control and full-fat 
treatment least square means at each time point 

 FFC0 
FFT0 

FFC1 
FFT1 

FFC7 
FFT7 

FFC14
FFT14 

Propan-2-one 1.000 1.000 0.071 0.024 

3-Methylbutanal 0.639 0.045 0.015 <.001 

3-Methylbutanol 1.000 1.000 0.196 0.164 

Heptan-2-one 0.676 0.999 <.001 <.001 

Heptanal 0.998 1.000 0.845 <.001 

2,6-Dimethylheptan-4-ol 1.000 0.015 <.001 <.001 

Benzaldehyde 1.000 0.899 0.195 0.002 

Dimethyl trisulfide 1.000 0.021 0.004 0.008 

2-Ethylhexan-1-ol 1.000 1.000 0.016 <.001 

p-Cymene 0.999 1.000 1.000 1.000 

2-Phenylacetaldehyde 1.000 0.584 0.993 0.732 

Nonan-2-one 0.975 1.000 0.0852 <.001 

Isothiocyanato cyclohexane 1.000 1.000 1.000 0.975 

Undecan-2-one 0.869 1.000 1.000 0.083 
For each column, the heading indicates which time and treatment are being compared 

 
Heptan-2-one imparts a high fruity and fatty odor. The heptan-2-one graph within 

Figure 9 shows heptan-2-one levels for the FFC and FFT samples starting at a slightly 

higher concentration than the LFC and LFT samples.  As time passes the controls 

decrease while the treatments increase.  The least square mean values for heptan-2-one at 

each time point indicates that there is a difference between the FFC and FFT samples and 

the LFC and LFT samples at both day 7 and 14.  There also was a difference in the FFT 

and LFT at day 0.  The least square means values for each treatment indicates a 

difference in the FFC, FFT, and LFT samples overtime, while no difference is apparent in  
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Table 10. Headspace tukey adjusted p-values comparing the low-fat control and low-
fat treatment least square means at each time point 

 LFC0 
LFT0 

LFC1 
LFT1 

LFC7 
LFT7 

LFC14
LFT14 

Propan-2-one 1.000 0.992 0.032 0.139 

3-Methylbutanal 0.963 0.108 <.001 <.001 

3-Methylbutanol 1.000 1.000 0.011 0.054 

Heptan-2-one 1.000 0.985 <.001 <.001 

Heptanal 1.000 1.000 1.000 0.691 

2,6-Dimethylheptan-4-ol 0.085 <.001 <.001 <.001 

Benzaldehyde 1.000 0.311 0.075 <.001 

Dimethyl trisulfide 1.000 0.061 0.470 0.002 

2-Ethylhexan-1-ol 1.000 0.999 <.001 <.001 

p-Cymene 1.000 1.000 1.000 1.000 

2-Phenylacetaldehyde 1.000 0.168 0.035 0.004 

Nonan-2-one 1.000 1.000 0.238 0.232 

Isothiocyanato cyclohexane 1.000 <.001 <.001 <.001 

Undecan-2-one 0.999 1.000 1.000 1.000 
For each column, the heading indicates which time and treatment are being compared 
 
 
the LFC sample. 

Nonan-2-one imparts a medium malty and fruity odor.  The nonan-2-one graph 

within Figure 9 shows a similar trend as the heptan-2-one graph.  The least square mean 

values for nonan-2-one at each time point shows a difference between the FFC and the 

FFT samples at day 14, with no difference found between the LFC and LFT and the FFT 

and LFT samples at any time point.  The least square means values for each treatment 

showed no difference in the treatments and controls over time with exception of the FFC,  
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Table 11. Headspace tukey adjusted p-values comparing the full-fat treatment and low-
fat treatment least square means at each time point 
 FFT0 

LFT0 
FFT1 
LFT1 

FFT7 
LFT7 

FFT14
LFT14 

Propan-2-one 1.000 1.000 1.000 1.000 

3-Methylbutanal 1.000 1.000 1.000 1.000 

3-Methylbutanol 1.000 1.000 0.986 1.000 

Heptan-2-one 0.022 0.069 0.289 0.101 

Heptanal 0.160 0.023 0.715 <.001 

2,6-Dimethylheptan-4-ol 1.000 1.000 1.000 1.000 

Benzaldehyde 1.000 1.000 1.000 0.999 

Dimethyl trisulfide 1.000 1.000 1.000 1.000 

2-Ethylhexan-1-ol 1.000 1.000 0.018 0.618 

p-Cymene <.001 0.004 0.279 0.852 

2-Phenylacetaldehyde 1.000 1.000 0.495 0.856 

Nonan-2-one 0.084 0.476 0.619 0.196 

Isothiocyanato cyclohexane 1.000 <.001 <.001 <.001 

Undecan-2-one 0.898 0.505 0.231 0.083 
For each column, the heading indicates which time and treatment are being compared 

 
which showed a difference between the Nonan-2-one concentrations between day 0 and 

14. 

Undecan-2-one imparts a medium floral odor.  The undecan-2-one graph within 

Figure 9 shows a similar trend as the heptan-2-one and Nonan-2-one levels.  Examining 

the least square mean values for Undecan-2-one at each time point and for each treatment 

over time, there were not any interesting significant differences to report. 
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Figure 9. Graphs of concentration versus day for ketone compounds (propan-2-one, 
heptan-2-one, nonan-2-one, and undecan-2-one) 
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Figure 9. Continued 
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Aldehydes 

 3-Methylbutanal, heptanal, benzaldehyde, and 2-phenylacetaldehyde are 

aldehydes that were that were retained in Table 7.  Fatty acids and amino acids are 

potential sources for these compounds.  Figure 1 shows aldehyde production from 

unsaturated fatty acids as a result of hydroperoxide lyase.  3-methylbutanal could 

originate as a result of Strecker reactions between α-amino acids and α-keto acids  

(McSweeney and Sousa 1999).  While the compounds benzaldehyde and 2-

phenylacetaldehyde could originate from the amino acid phenylalanine (McSweeney and 

Sousa 1999).  Each of these compounds has been found in Cheddar cheese (Curioni and 

Bosset 2002).  The graphs in Figure 10 show an upward trend as time passes in the 

aldehyde concentrations in the LF and FF treatments while the controls stay at a lower 

concentration throughout time. 

 

 
Figure 10. Graphs of concentration versus day for aldehyde compounds                          
(3-methylbutanal, heptanal, benzaldehyde, and 2-phenylacetaldehyde) 
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Figure 10. Continued 
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Figure 10. Continued 

 
3-Methylbutanal imparts a high green and malty odor.  The 3-methylbutanal 

graph within Figure 10 shows an increase in the concentration of 3-methylbutanal in the 

treatments and a near zero level in the controls over time.  The least square means values 

at each time point indicate a difference between FFC and FFT at days 1, 7, and 14, with 

differences in LFC and LFT at days 7 and 14, and no differences apparent between FFT 

and LFT at any time points. The least square means values for each treatment showed no 

difference in each of the individual treatments and controls over time. 

Heptanal imparts a high soapy odor.  The heptanal graph within Figure 10 shows 

an initial difference in concentration at day 0 with an increase over time in the FFT and a 

decrease in the FFC, while the LFC and LFT remain at a low concentration.  The least 

square means values for each time point shows a difference in the FFC and FFT as well 

as the FFT and LFT all at day 14.  The least square means values for each treatment over 

time showed a change in the FFC and FFT and no change for the LFC and LFT. 
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Benzaldehyde imparts a high sharp, sweet, bitter, almond, and cherry odor.  

The benzaldehyde graph within Figure 10 shows an increase in the concentration of FFT 

and LFT samples while the FFC and LFC benzaldehyde levels remained near zero.  The 

least square mean values for each time point indicates a difference in the FFC and FFT 

and the LFC and LFT both at day 14 and no difference between the FFT and LFT 

samples.  The least square means values for each treatment over time showed a change in 

the FFT and LFT and no change for the FFC and LFC. 

2-Phenylacetaldehyde imparts a high rosey stirene odor.  The 2-

phenylacetaldehyde graph within Figure 10 shows an increase in the FFT and LFT levels 

over time with a higher amount found in the LFT sample.  The FFC and the LFC levels 

stay at a low level.  The least square mean values for each time point indicates a 

difference between the LFC and LFT samples at days 7 and 14 and no difference between 

FFC and FFT and FFT and LFT.  The least square mean value for each treatment over 

time showed a difference in the LFT 2-phenylacetaldehyde concentration and no 

difference in the FFC, LFC, and FFT overtime. 

 
Alcohols 

 3-Methylbutanol, 2,6-dimethylheptan-4-ol, and 2-ethylhexan-1-ol are alcohols 

that were retained in Table 7.  Fatty acids and amino acids are potential starting substrates 

for the production of alcohol, see Figure 1 and Table 4.  Each of these compounds has 

been found in Cheddar cheese (Curioni and Bosset 2002).  The trends in the graphs of 

concentration versus time in Figure 11 for the alcohol compounds show an increase in the 

FFT and LFT samples while the FFC and LFC samples stayed at or near zero. 
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Figure 11.  Graphs of Concentration versus Day for alcohol compounds (3-
Methylbutanol, 2, 6-Dimethylheptan-4-ol, and 2-Ethylhexan-1-ol) 
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Figure 11.  Continued 
 
 
 3-Methylbutanol imparts green and alcoholic odor.  The concentration of the FFT 

and LFT increase while the FFC and LFC remain constant overtime. The least square 

means p-values for 3-methylbutanol at each time point indicates no difference between 

the FFC and FFT, LFC and LFT, and FFT and LFT samples.  The least square means of 

each treatment shows a difference in the FFC, FFT, and LFT samples over time. 
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constant over time.  The least square means p-values for 2,6-Dimethylheptan-4-ol at each 

time point indicate differences between the FFC and FFT and the LFC and LFT both at 

days 7 and 14. The least square means of each treatment show a difference in the FFT 

and LFT samples over time. 
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over time.  The least square means p-values for 2-ethylhexan-1-ol at each time point 

indicate differences between the FFC and FFT and the LFC and LFT both at days 7 and 

14, as well as between FFT and LFT at day 7.  The least square means of each treatment 

show a difference in the FFT and LFT samples over time. 

 
Others 
 
 Dimethyl trisulfide, p-cymene, and isothiocyanato cyclohexane were categorized 

in the other group of compounds that were retained in Table 7.  The origins of p-cymene 

and isothiocyanato cyclohexane are unknown.  Their ring structure could indicate an 

aromatic amino acid such as phenylalanine as a potential source.  Dimethyl trisulfide is 

believed to be a byproduct of methionine metabolism (McSweeney and Sousa 1999).  

Dimethyl trisulfide is a well-known flavor compound found in cheese while there is no 

known source identifying p-cymene and isothiocyanato cyclohexane in Cheddar cheese. 

 

 
Figure 12.  Graphs of Concentration versus Day for other compounds (dimethyl 
trisulfide, p-cymene, and isothiocyanato cyclohexane) 
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 Figure 12. Continued 
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Dimethyl trisulfide imparts a high sulfurous and cabbage odor.  The dimethyl 

trisulfide graph within Figure 12 shows an increase in the FFT and LFT levels overtime 

while the FFC and the LFC levels stayed at a low level with the exception of LFC at day 

7.  The least square mean values for each time point indicates a difference between the 

FFC and FFT samples at days 1, 7, and 14 and LFC and LFT at day 14.  The least square 

mean value for each treatment over time showed a difference in the FFT dimethyl 

trisulfide concentration over time and no difference in the FFC, LFC, and LFT overtime.  

P-cymene imparts a high fresh, citrus, terpene, woody, and spice odor.  The p-

cymene graph within Figure 12 shows a constant low concentration in the LFC and LFT 

samples while the FFC and FFT samples decrease overtime.  This indicates that the p-

cymene could be coming from the MFGM and may be a product of bacterial metabolism 

in the media.  The least square mean values for each time point indicates a difference 

between the FFT and LFT samples at days 0 and 1.  The least square mean value for each 

treatment over time showed a difference in the FFC and FFT p-cymene concentration 

over time and no difference in the LFC and LFT samples overtime.  

  The odor imparted by isothiocyanato cyclohexane is unknown.  According to 

Rapior and others (1997) isothiocyanato cyclohexane was found in garlic and was 

hypothesized to play contributing part in the garlic odor and taste.  The isothiocyanato 

cyclohexane graph within Figure 12 shows an increase in the LFT isothiocyanato 

cyclohexane concentrations while the FFC, FFT, and LFC samples indicated 

concentrations near zero throughout time.  The least square mean values for each time 

point indicates a difference between the LFC and LFT and the FFT and the LFT samples  
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at days 1, 7, and 14.  The least square mean values for each treatment overtime showed 

a difference in only the LFT sample isothiocyanato cyclohexane concentrations.   

 
Headspace principal component analysis 

Using the 14 compounds in Table 7 a PCA was performed.  The eigenvalues of 

the correlation matrix in Table 12, as well as the eigenvalue plot in Figure 13 were used 

to determine that the first two principal components were sufficient to explain 67.4% of 

the variation in the data. 

 
Table 12. Eigenvalues of the correlation matrix for the headspace principal component 
analysis  

 Eigenvalue Difference Proportion Cumulative 

1 6.53995003 3.63820478 0.4671 0.4671 

2 2.90174525 1.73388887 0.2073 0.6744 

3 1.16785638 0.32391118 0.0834 0.7578 

4 0.84394520 0.08752693 0.0603 0.8181 

5 0.75641826 0.21303167 0.0540 0.8721 

6 0.54338659 0.11761922 0.0388 0.9110 

7 0.42576737 0.14615792 0.0304 0.9414 

8 0.27960945 0.04702536 0.0200 0.9613 

9 0.23258409 0.11072012 0.0166 0.9779 

10 0.12186397 0.05637399 0.0087 0.9867 

11 0.06548998 0.01437088 0.0047 0.9913 

12 0.05111910 0.00997367 0.0037 0.9950 

13 0.04114544 0.01202656 0.0029 0.9979 

14 0.02911888  0.0021 1.000 
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Figure 13. Eigenvalue plot for the headspace principal component analysis 
 
 

 
Figure 14. Score plots of every day combined for the headspace principal component 
analysis; FFC: plus sign; LFC: circle; FFT: square; LFT: asterisk 
Day 0: black; Day 1: blue; Day 7: red; Day 14: green 

 



 54 

 

   
Figure 15.  Score plots of days 0, 1, 7, 14 for the headspace principal component analysis; 
FFC: black plus sign; LFC: green circle; FFT: blue square; LFT: red asterisk 
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The score plots in Figure 14 and 15 show little discrimination between days 0 

and 1 but days 7 and 14 there is a clear discrimination between the treatments.  At day 14, 

Prin1 separates the treatments from the controls and Prin2 separates the LFT and FFT 

samples.  The eigenvectors in Table 10 for Prin1 indicate that 3-methylbutanal, heptan-2-

one, benzaldehyde, 2-ethylhexan-1-ol, 2,6-dimethylheptan-4-ol, and 3-methylbutanol, 

using 0.3 as a cut off, play the largest role in separating the treatments from the controls.  

The eigenvectors from the same table for Prin2 indicate that heptanal, p-cymene, nonan-

2-one, and undecan-2-one, using 0.3 as a cut off, play the largest role in separating the LF 

from the FF samples.  

 
Table 13.  Eigenvectors of principal component 1 and principal component 2 for the 
headspace principal component analysis 
 Prin1 Prin2 

Propan-2-one 0.119028 0.269622 

3-Methylbutanal 0.306599 -.184472 

Heptan-2-one 0.331138 0.253856 

Heptanal 0.217257 0.398993 

Benzaldehyde 0.316766 -.017690 

p-Cymene 0.013619 0.520334 

2-Ethylhexan-1-ol 0.349095 -.182013 

2-Phenylacetaldehyde 0.274115 -.264580 

Nonan-2-one 0.289992 0.337198 

2,6-Dimethylheptan-4-ol 0.313748 -.069826 

3-Methylbutanol 0.303569 -.144666 

Dimethyl trisulfide 0.254344 -.110392 

Undecan-2-one 0.145318 0.309860 

Isothiocyanato cyclohexane 0.277395 -.218491 
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Metabolomics  
 
 
Cheddar cheese extract principal component analysis 
 
 The metabolite analysis of the CCE produced 23 compounds that were 

significantly different between the LF and FF samples.  A PCA analysis was conducted 

to reduce the variables and reveal potential trends in the data.  The eigenvalues of the 

correlation matrix in Table 14, as well as the eigenvalue plot in Figure 16 were used to 

determine that the first three principal components were sufficient to explain 65.4% of 

the variation in the data.  

The score plots in Figure 17 do not show a clear separation of the FF and LF 

samples.  It could be argued that there is a slight separation of the FF and LF samples 

along the Prin3 axis in the Prin2 versus Prin3 graph. 

 

 
Figure 16. Eigenvalue plot for the Cheddar cheese extract metabolites principal 
component analysis 
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Table 14. Eigenvalues of the correlation matrix for the Cheddar cheese extract 
metabolites principal component analysis  
 Eigenvalue Difference Proportion Cumulative 

1 7.23750326 2.71812069 0.3147 0.3147 

2 4.51938256 1.23421507 0.1965 0.5112 
3 3.28516749 0.81702165 0.1428 0.6540 

4 2.46814585 1.06742925 0.1073 0.7613 
5 1.40071660 0.39029526 0.0609 0.8222 

6 1.01042134 0.31526829 0.0439 0.8661 
7 0.69515305 0.23750313 0.0302 0.8964 

8 0.45764992 0.04618574 0.0199 0.9163 
9 0.41146418 0.02222579 0.0179 0.9342 

10 0.38923839 0.09195315 0.0169 0.9511 
11 0.29728524 0.05914323 0.0129 0.9640 

12 0.23814201 0.06819771 0.0104 0.9744 
13 0.16994430 0.02501507 0.0074 0.9817 

14 0.14492923 0.04173826 0.0063 0.9880 
15 0.10319097 0.03511190 0.0045 0.9925 

16 0.06807906 0.01800842 0.0030 0.9955 
17 0.05007064 0.03132476 0.0022 0.9977 

18 0.01874588 0.00232734 0.0008 0.9985 
19 0.01641854 0.00613542 0.0007 0.9992 

20 0.01028312 0.00519889 0.0004 0.9996 
21 0.00508423 0.00284011 0.0002 0.9999 

22 0.00224412 0.00150410 0.0001 1.000 
23 0.00074002  0.0000 1.000 
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Figure 17. Score plots of every day combined for the Cheddar cheese extract metabolites 
principal component analysis; full-fat: blue square, low-fat: black square 
 
 
Bacterial principal component analysis 
 

The metabolite analysis of the bacteria produced 9 compounds that were 

significantly different between the LF and FF samples.  A PCA analysis was conducted 

to reduce the variables and reveal potential trends in the data.  The eigenvalues of the 

correlation matrix in Table 16, as well as the eigenvalue plot in Figure 18 were used to  
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determine that the first two principal components were sufficient to explain 75.7% of 

the variation in the data.  

 
Table 15. Eigenvectors of principal component 1, principal component 2, and principal 
component 3 for the Cheddar cheese extract metabolites principal component analysis 
 Prin1 Prin2 Prin3 

Unknown 0.320069 -.153259 -.034325 
Unknown 0.015528 -.245981 -.263845 

L-Aspartic acid (3TMS) 0.116906 -.058386 -.277402 
Unknown 0.195215 -.024408 -.387903 

L-Asparagine, N,N2-bis(trimethylsilyl) 0.317572 0.096230 -.202650 
L-Glycerol-3-phosphate (4TMS) 0.230566 0.066331 -.283791 

L-Glutamine (3TMS) 0.318834 0.012027 -.055434 
Unknown 0.203090 0.148706 0.260753 

Unknown 0.224152 -.263635 0.229715 
L-Arginine (5TMS) 0.258672 -.266747 -.012258 

d-Galactose, 2,3,4,5,6-pentakis-O-
(trimethylsilyl) 0.143895 -.301076 0.204022 

Unknown 0.117400 0.293783 0.043884 
L-Tyrosine, N,O-bis(trimethylsilyl) 0.303161 0.125219 -.215036 

Unknown 0.290680 -.060093 0.247129 
Unknown 0.147292 0.210464 0.260091 

Unknown 0.128212 0.258309 0.192428 
Lactose methoxyamine 0.154922 -.273628 0.194209 

Unknown -.201651 0.123962 0.204847 
L-Isoleucine 0.074924 0.138292 0.025714 

Unknown -.034735 0.324171 -.154462 
L-Threonine (3TMS) 0.222303 0.203308 0.283653 

Unknown 0.022732 0.358250 -.121234 
Unknown 0.247036 0.209839 0.036093 
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Table 16. Eigenvalues of the correlation matrix for the bacterial metabolites principal 
component analysis 
 Eigenvalue Difference Proportion Cumulative 

1 5.33848144 3.86044966 0.5932 0.5932 

2 1.47803178 0.40695880 0.1642 0.7574 
3 1.07107298 0.53707734 0.1190 0.8764 

4 0.53399564 0.13072195 0.0593 0.9357 
5 0.40327369 0.29771860 0.0448 0.9805 

6 0.10555509 0.05344991 0.0117 0.9923 
7 0.05210518 0.03869025 0.0058 0.9981 

8 0.01341493 0.00934564 0.0015 0.9995 
9 0.00406929  0.0005 1.000 

 
 

Figure 18. Eigenvalue plot for the bacterial metabolites principal component analysis 
 
 
 The score plot of Figure 19 does not show a complete separation between the FF 

and LF samples.  Prin1 does slightly separate the FF and LF samples.  Using 0.40 as a 

cutoff, Hexadecanoic acid (1TMS), Oleic acid trimethylsilyl ester, and Octadecanoic acid  
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trimethylsilyl ester give the largest contribution to the variation of the LF and FF 

bacterial metabolites from Table 17. 

 
Table 17. Eigenvectors of principal 1 and principal 2 for the bacterial metabolites 
principal component analysis 
 Prin1 Prin2 

Pyroglutamic acid (2TMS) 0.307438 0.431379 
Alanine, phenyl-trimethylsilyl ester 0.214843 0.466161 

Citric acid (4TMS) 0.337256 0.457391 
Hexadecanoic acid (1TMS) 0.406653 -.204536 

Oleic acid, trimethylsilyl ester 0.410859 -.145816 
Octadecanoic acid, trimethylsilyl ester 0.402848 -.256275 

Glycine (2TMS) 0.136623 0.224317 
Unknown 0.397103 -.135434 

Unknown 0.269756 -.435849 
 

 

 
Figure 19. Score plots of every day combined for the bacterial metabolites principal 
component analysis; full-fat: blue square, low-fat: black square  
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CONCLUSIONS 

 
 

The bacterial growth during the fermentation was minimal.  The cell counts 

resembled the counts found in ripening Cheddar cheese of around 108 CFU per g or ml.  

The lack of growth could be attributed to the lack of growth substrates as well as the salt 

concentrations found in both the LF and FF CCE.  The lack of growth indicates that the 

conditions within the CCE successfully mirrored ripening cheese. 

Propan-2-one, heptan-2-one, 3-methylbutanal, heptanal, benzaldehyde, 2-

ethylhexan-1-ol, and dimethyl trisulfide were present at a higher concentration in the FFT 

and LFT when compared to their respective controls.  Thus, the presence of these 

compounds can be attributed to the action of the starter cultures in the samples.  This 

shows that the metabolic action of the starter culture Lactococcus lactis does alter the HS 

profile in CCE and potentially Cheddar cheese.   

Differences between the FF and LF samples were seen in the heptan-2-one and p-

cymene concentrations early in the fermentation process with a higher concentration 

found in the FF compared to the LF.  The early difference indicates that this difference 

could be due to the FF and LF conditions in the CCE media, primarily the fat or MFGM 

level.  Other differences in the heptanal, 2-ethylhexan-1-ol, and cyclohexyl isothicyanate 

concentrations, between the FFT and LFT samples, were detected later in the 

fermentation process.  This indicates that differences were brought about by the growth 

of starter cultures in there respective medias.  The media conditions of FF and LF affects 

the heptanal, 2-ethylhexan-1-ol, and cyclohexyl isothiocyanate levels as a result of starter 

culture metabolism.  These findings further substantiate the credibility of the second LF 
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theory that states the microbial physiology itself, and thus overall metabolism, is 

altered by differences in the physico-chemical environment in ways that affect the 

production of flavor and aroma active metabolites.  These compounds could play a 

contributing role in the off flavors found in LF Cheddar cheese.  

 The HS PCA provided a separation of the FFC, LFC, FFT, and LFT based on 

both FF versus LF and control versus treatment.  The compounds found to be most 

responsible for the variation between FF and LF samples are heptanal, p-cymene, Nonan-

2-one, and Undecan-2-one.  Examining the graphs of concentration versus time for each 

of these compounds, at day 0 the FF samples have a higher concentration of these 

compounds when compared to the LF samples.  The compounds found to be the most 

responsible for the variation between the control and treatment samples are 3-

methylbutanal, heptan-2-one, benzaldehyde, 2-Ethylhexan-1-ol, 2,6-Dimethylheptan-4-

ol, and 3-methylbutanol.  An explanation of this separation could be due to the significant 

differences found between the treatments and controls in all these compounds except 2,6-

Dimethylheptan-4-ol. 

 The PCA metabolomic results for both the bacteria and CCE metabolites did not 

produce a clear separation between the FF and LF samples.  This could be due to the 

sensitivity of the method or the metabolites in the samples are not sufficiently different 

enough to produce a separation.  Perhaps a larger sample size would have produced a 

better separation of the treatments or the addition of another variable like different strain 

of starter culture or another incubation temperature.  The two-week incubation time could 

be too short and a longer time maybe needed to produce a separation between the FF and 

LF samples. 
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 Differences in the HS of the FF and LF samples occurred as a result of the 

metabolism of the starter cultures at 30°C, further tests are needed to verify if similar 

differences occur at ripening temperatures.  Other future tests could involve sensory 

analysis of the compounds found to be different in the FFT and the LFT in a Cheddar 

cheese sample to verify if the differences in concentration can be detected.   
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Appendix A: Headspace Solid Phase Micro-Extraction Means and Standard Deviations 
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Table A1. Headspace full-fat control means and standard deviation 

  FFC 0 FFC 1 FFC 7 FFC 14 

Propan-2-one 2.8193 1.0412 2.2373 0.4978 0.6677 0.0879 0.1503 0.0901 

3-Methylbutanal 0.0348 0.0340 0.0269 0.0235 0.0088 0.0074 0.0003 0.0001 

3-Methylbutanol 0.0311 0.0530 0.0051 0.0082 0.0004 0.0001 0.0095 0.0159 

Heptan-2-one 0.1478 0.0379 0.0926 0.0186 0.0162 0.0137 0.0153 0.0010 

Heptanal 0.0304 0.0107 0.0235 0.0053 0.0080 0.0010 0.0083 0.0006 

2,6-Dimethylheptan-4-ol 0.0039 0.0030 0.0034 0.0027 0.0004 0.0001 0.0032 0.0026 

Benzaldehyde 0.0225 0.0095 0.0251 0.0140 0.0265 0.0028 0.0332 0.0149 

Dimethyl trisulfide 0.0021 0.0028 0.0003 0.0001 0.0004 0.0001 0.0020 0.0030 

2-Ethylhexan-1-ol 0.1940 0.2550 0.0493 0.0535 0.0380 0.0396 0.0553 0.0775 

p-Cymene 0.0073 0.0027 0.0053 0.0010 0.0021 0.0014 0.0016 0.0012 

2-Phenylacetaldehyde 0.0298 0.0142 0.0260 0.0038 0.0341 0.0050 0.0456 0.0187 

Nonan-2-one 0.0501 0.0261 0.0299 0.0061 0.0165 0.0045 0.0031 0.0049 

Isothiocyanato 
cyclohexane 0.0008 0.0003 0.0007 0.0002 0.0008 0.0003 0.0006 0.0002 

Undecan-2-one 0.0039 0.0060 0.0137 0.0054 0.0128 0.0050 0.0031 0.0050 
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Table A2. Headspace low-fat control means and standard deviation 

  LFC 0 LFC 1 LFC 7 LFC 14 

Propan-2-one 2.0343 0.1991 2.6004 1.1410 0.4241 0.1558 0.1811 0.0577 

3-Methylbutanal 0.0275 0.0146 0.0129 0.0092 0.0094 0.0158 0.0050 0.0081 

3-Methylbutanol 0.0027 0.0041 0.0010 0.0013 0.0014 0.0018 0.0003 0.0000 

Heptan-2-one 0.0521 0.0046 0.0269 0.0212 0.0126 0.0052 0.0124 0.0019 

Heptanal 0.0110 0.0032 0.0070 0.0039 0.0043 0.0015 0.0044 0.0013 

2,6-Dimethylheptan-4-ol 0.0003 0.0001 0.0010 0.0013 0.0003 0.0001 0.0003 0.0000 

Benzaldehyde 0.0166 0.0079 0.0172 0.0157 0.0226 0.0121 0.0171 0.0015 

Dimethyl trisulfide 0.0015 0.0020 0.0010 0.0013 0.0584 0.1006 0.0003 0.0000 

2-Ethylhexan-1-ol 0.2207 0.2198 0.0253 0.0414 0.0524 0.0617 0.0023 0.0034 

p-Cymene 0.0010 0.0011 0.0010 0.0013 0.0003 0.0001 0.0003 0.0000 

2-Phenylacetaldehyde 0.0249 0.0150 0.0161 0.0118 0.0327 0.0139 0.0278 0.0039 

Nonan-2-one 0.0078 0.0063 0.0044 0.0053 0.0003 0.0001 0.0003 0.0000 

Isothiocyanato 
cyclohexane 0.0005 6.3 E-6 0.0007 0.0002 0.0005 5.6 E-6 0.0007 0.0002 

Undecan-2-one 0.0090 0.0095 0.0041 0.0048 0.0003 0.0001 0.0003 0.0000 
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Table A3. Headspace full-fat treatment means and standard deviation 

  FFT 0 FFT 1 FFT 7 FFT 14 

Propan-2-one 2.5820 0.5384 2.1981 0.3788 2.3223 0.1265 2.0456 0.2968 

3-Methylbutanal 0.1819 0.0396 0.9097 0.3972 1.0187 1.0887 2.0133 0.2830 

3-Methylbutanol 0.0178 0.0151 0.0603 0.0278 0.5484 0.1084 0.5748 0.2532 

Heptan-2-one 0.1117 0.0090 0.1098 0.0187 0.1583 0.0238 0.1937 0.0439 

Heptanal 0.0253 0.0029 0.0254 0.0037 0.0169 0.0111 0.0479 0.0128 

2,6-Dimethylheptan-4-ol 0.0053 0.0043 0.0647 0.0153 0.5286 0.5357 0.5821 0.6052 

Benzaldehyde 0.0168 0.0037 0.0518 0.0224 0.1007 0.0050 0.3653 0.2727 

Dimethyl trisulfide 0.0019 0.0016 0.0271 0.0164 0.0503 0.0082 0.0856 0.0437 

2-Ethylhexan-1-ol 0.0520 0.0521 0.1361 0.1067 1.0521 0.3465 1.9527 0.4239 

p-Cymene 0.0064 0.0010 0.0048 0.0007 0.0029 0.0005 0.0020 0.0014 

2-Phenylacetaldehyde 0.0300 0.0009 0.0915 0.0520 0.0784 0.0616 0.1481 0.0939 

Nonan-2-one 0.0364 0.0077 0.0336 0.0036 0.0505 0.0169 0.0587 0.0205 

Isothiocyanato 
cyclohexane 0.0009 0.0003 0.0007 0.0002 0.0008 0.0005 0.0015 0.0016 

Undecan-2-one 0.0122 0.0082 0.0125 0.0017 0.0157 0.0062 0.0194 0.0088 
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Table A4. Headspace low-fat treatment means and standard deviation 

  LFC 0 LFC 1 LFC 7 LFC 14 

Propan-2-one 2.6604 1.0035 2.0242 0.1085 2.2532 0.1690 1.6794 0.7391 

3-Methylbutanal 0.1672 0.0686 0.5540 0.1110 2.3460 2.5234 2.5241 0.4880 

3-Methylbutanol 0.0021 0.0023 0.0393 0.0137 0.7903 0.6432 0.6638 0.5114 

Heptan-2-one 0.0421 0.0127 0.0494 0.0111 0.1110 0.0040 0.1365 0.0225 

Heptanal 0.0102 0.0033 0.0058 0.0018 0.0069 0.0010 0.0145 0.0027 

2,6-Dimethylheptan-4-ol 0.0047 0.0006 0.0827 0.0145 0.4501 0.1165 0.4048 0.2072 

Benzaldehyde 0.0137 0.0039 0.0389 0.0159 0.1065 0.0484 0.2086 0.0922 

Dimethyl trisulfide 0.0020 0.0009 0.0290 0.0163 0.0353 0.0045 0.0633 0.0179 

2-Ethylhexan-1-ol 0.1139 0.1440 0.2606 0.1660 1.6088 0.5951 2.4907 0.6229 

p-Cymene 0.0009 0.0006 0.0003 0.0001 0.0003 0.0000 0.0004 0.0001 

2-Phenylacetaldehyde 0.0222 0.0079 0.0578 0.0321 0.2798 0.2494 0.3254 0.1251 

Nonan-2-one 0.0023 0.0026 0.0097 0.0082 0.0288 0.0029 0.0290 0.0184 

Isothiocyanato 
cyclohexane 0.0006 0.0002 0.0096 0.0024 0.0390 0.0054 0.0524 0.0100 

Undecan-2-one 0.0043 0.0037 0.0013 0.0016 0.0020 0.0028 0.0031 0.0047 
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Appendix B: Headspace Comparison of Least Square Means Overtime 
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Table B1. Headspace tukey adjusted p-values comparing full-fat control least square 
means overtime 
 FFC0 

FFC1 
FFC0 
FFC7 

FFC0 
FFC14 

FFC1 
FFC7 

FFC1 
FFC14 

FFC7 
FFC14 

Propan-2-one 0.993 0.007 0.001 0.117 0.009 0.998 

3-Methylbutanal 1.000 1.000 0.163 1.000 1.000 0.770 

3-Methylbutanol 1.000 1.000 1.000 0.001 1.000 1.000 

Heptan-2-one 0.024 <.001 <.001 1.000 0.004 1.000 

Heptanal 0.830 0.002 0.005 0.018 0.086 1.000 

2,6-Dimethylheptan-4-ol 1.000 0.413 1.000 0.551 1.000 0.608 

Benzaldehyde 1.000 1.000 1.000 1.000 1.000 1.000 

Dimethyl trisulfide 0.999 0.999 1.000 1.000 1.000 1.000 

2-Ethylhexan-1-ol 0.997 1.000 1.000 1.000 1.000 1.000 

p-Cymene 0.501 0.001 <.001 0.027 0.019 1.000 

2-Phenylacetaldehyde 1.000 1.000 1.000 1.000 0.998 1.000 

Nonan-2-one 0.407 0.058 0.004 0.893 0.234 0.900 

Isothiocyanato cyclohexane 1.000 0.998 1.000 1.000 1.000 1.000 

Undecan-2-one 0.284 0.681 1.000 1.000 0.426 0.290 
For each column, the heading indicates which time and treatment are being compared.   
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Table B2. Headspace tukey adjusted p-values comparing low-fat control least square 
means overtime 
 LFC0 

LFC1 
LFC0 
LFC7 

LFC0 
LFC14 

LFC1 
LFC7 

LFC1 
LFC14 

LFC7 
LFC14 

Propan-2-one 0.995 0.086 0.029 0.007 0.002 1.000 

3-Methylbutanal 1.000 0.541 0.396 0.980 0.860 1.000 

3-Methylbutanol 1.000 1.000 1.000 1.000 1.000 1.000 

Heptan-2-one 0.831 0.445 0.506 1.000 0.998 1.000 

Heptanal 0.998 0.999 1.000 1.000 1.000 1.000 

2,6-Dimethylheptan-4-ol 0.998 1.000 1.000 0.996 0.999 1.000 

Benzaldehyde 0.999 1.000 1.000 0.905 0.999 1.000 

Dimethyl trisulfide 1.000 0.996 0.999 0.983 1.000 0.736 

2-Ethylhexan-1-ol 0.961 0.999 0.997 1.000 1.000 1.000 

p-Cymene 1.000 0.999 1.000 0.999 0.999 1.000 

2-Phenylacetaldehyde 0.968 1.000 1.000 0.609 0.843 1.000 

Nonan-2-one 1.000 0.999 0.999 1.000 1.000 1.000 

 Isothiocyanato cyclohexane 0.996 1.000 0.999 0.985 1.000 0.983 

Undecan-2-one 0.976 0.707 0.784 0.997 0.999 1.000 
For each column, the heading indicates which time and treatment are being compared. 
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Table B3. Headspace tukey adjusted p-values comparing full-fat treatment least square 
means overtime 
 FFT0 

FFT1 
FFT0 
FFT7 

FFT0 
FFT14 

FFT1 
FFT7 

FFT1 
FFT14 

FFT7 
FFT14 

Propan-2-one 0.999 1.000 0.996 1.000 1.000 1.000 

3-Methylbutanal 0.996 0.999 0.789 1.000 1.000 0.999 

3-Methylbutanol 1.000 0.080 0.105 0.027 0.099 1.000 

Heptan-2-one 1.000 0.221 0.003 0.067 0.002 0.988 

Heptanal 1.000 0.803 0.004 0.559 0.002 <.001 

2,6-Dimethylheptan-4-ol 0.020 <.001 <.001 0.590 0.655 1.000 

Benzaldehyde 0.250 0.014 <.001 0.813 0.013 0.230 

Dimethyl trisulfide 0.348 0.073 0.028 1.000 0.996 1.000 

2-Ethylhexan-1-ol 1.000 <.001 <.001 <.001 <.001 <.001 

p-Cymene 0.783 0.039 0.005 0.567 0.173 0.997 

2-Phenylacetaldehyde 0.639 0.963 0.290 1.000 0.999 0.971 

Nonan-2-one 1.000 0.947 0.550 0.659 0.316 0.999 

 Isothiocyanato cyclohexane 1.000 1.000 1.000 1.000 1.000 1.000 

Undecan-2-one 0.999 1.000 1.000 1.000 0.958 0.963 
For each column, the heading indicates which time and treatment are being compared. 
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Table B4. Headspace tukey adjusted p-values comparing low-fat treatment least square 
means overtime 
 LFT0 

LFT1 
LFT0 
LFT7 

LFT0 
LFT14 

LFT1 
LFT7 

LFT1 
LFT14 

LFT7 
LFT14 

Propan-2-one 0.984 0.999 0.699 1.000 1.000 0.994 

3-Methylbutanal 0.999 0.814 0.616 0.999 0.992 1.000 

3-Methylbutanol 1.000 0.002 0.027 <.001 0.021 0.999 

Heptan-2-one 1.000 0.013 0.001 0.008 0.001 0.820 

Heptanal 0.994 1.000 0.999 1.000 0.758 0.716 

2,6-Dimethylheptan-4-ol 0.032 0.001 0.001 0.569 0.821 1.000 

Benzaldehyde 0.329 0.005 <.001 0.392 0.031 0.861 

Dimethyl trisulfide 0.483 0.272 0.099 1.000 0.999 1.000 

2-Ethylhexan-1-ol 0.997 <.001 <.001 <.001 <.001 <.001 

p-Cymene 1.000 1.000 1.000 1.000 1.000 1.000 

2-Phenylacetaldehyde 0.769 0.005 0.001 0.175 0.066 1.000 

Nonan-2-one 0.999 0.245 0.291 0.481 0.684 1.000 

 Isothiocyanato cyclohexane <.001 <.001 <.001 <.001 <.001 0.966 

Undecan-2-one 0.999 1.000 1.000 1.000 1.000 1.000 
For each column, the heading indicates which time and treatment are being compared. 
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