39 research outputs found

    Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array

    Get PDF
    The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, d_i = a/(b + i)^c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, d_(max). The result is a 10 mirror group design optimized for a flat even energy response both on and off-axis

    NuSTAR Observations of the Magnetar 1E 2259+586

    Get PDF
    We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double-blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggests that an additional component, such as a power-law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.Comment: 37 pages, 9 figures, corresponding author, [email protected]

    The Central X-Ray Point Source in Cassiopeia A

    Get PDF
    The spectacular first light observation by the Chandra X-Ray Observatory revealed an X-ray point source near the center of the 300 yr old Cas A supernova remnant. We present an analysis of the public X-ray spectral and timing data. No coherent pulsations were detected in the Chandra/HRC data. The 3-sigma upper limit on the pulsed fraction is 20 ms. The Chandra/ACIS spectrum of the point source may be fit with an ideal blackbody (kT=0.5 keV), or with BB models modified by the presence of a NS atmosphere (kT=0.25-0.35 keV), but the temperature is higher and the inferred emitting area lower than expected for a 300 yr old NS according to standard cooling models. The spectrum may also be fit with a power law model (photon index 2.8-3.6). Both the spectral properties and the timing limits of the point source are inconsistent with a young Crab-like pulsar, but are quite similar to the properties of the anomalous X-ray pulsars. The spectral parameters are also very similar to those of the other radio-quiet X-ray point sources in the supernova remnants Pup A, RCW 103, and PKS 1209-52. Current limits on an optical counterpart for the Cas A point source rule out models that invoke fallback accretion onto a compact object if fallback disk properties are similar to those in quiescent low-mass X-ray binaries. However, the optical limits are marginally consistent with plausible alternative assumptions for a fallback disk. In this case, accreting NS models can explain the X-ray data, but an accreting BH model is not promising.Comment: 17 pages including 2 figs. To appear in ApJ, Vol. 546 (Jan 10, 2001). Minor revisions per referee. Pulsation limits revised in light of HRC wiring problem. Typos correcte

    NuSTAR on-ground calibration: I. Imaging quality

    Get PDF
    The Nuclear Spectroscopic Telescope Array (NuSTAR) launched in June 2012 carries the first focusing hard Xray (5 - 80 keV) telescope to orbit. The on-ground calibration was performed at the RaMCaF facility at Nevis, Columbia University. During the assembly of the telescopes, mechanical surface metrology provided surface maps of the reflecting surfaces. Several flight coated mirrors were brought to BNL for scattering measurements. The information from both sources is fed to a raytracing code that is tested against the on-ground calibration data. The code is subsequently used for predicting the imaging properties for X-ray sources at infinite distance

    NuSTAR ground calibration: The Rainwater Memorial Calibration Facility (RaMCaF)

    Get PDF
    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5-80 keV ) telescope to orbit. The ground calibration of the three flight optics was carried out at the Rainwater Memorial Calibration Facility (RaMCaF) built for this purpose. In this article we present the facility and its use for the ground calibration of the three optics

    A broadband x-ray study of the Geminga pulsar with NuSTAR and XMM-Newton

    Get PDF
    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the NuSTAR observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power-law, but instead exhibit spectral hardening above ~5 keV. We find two spectral models fit the data well: (1) a blackbody (kT1 ~ 42 eV) with a broken power-law (Gamma1 ~ 2.0, Gamma2 ~ 1.4 and Ebreak ~ 3.4 keV), and (2) two blackbody components (kT1 ~ 44 eV and kT2 ~ 195 eV) with a power-law component (Gamma ~ 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E ~ 0.01 - 1 keV. While strong phase variation of the power-law index is present below ~5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with Gamma ~ 1.3 emerges above ~5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power-law may account for multi-wavelength non-thermal spectra of middle-aged pulsars.Comment: Accepted to Ap

    NuSTAR Hard X-ray Survey of the Galactic Center Region I: Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    Get PDF
    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ1.3\Gamma\sim1.3-2.32.3 up to ~50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα\alpha fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broad-band X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (1023\sim10^{23} cm2^{-2}), primary X-ray spectra (power-laws with Γ2\Gamma\sim2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX>1038L_X \stackrel{>}{\sim} 10^{38} erg s1^{-1}. Above ~20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD0.9MM_{\rm WD} \sim 0.9 M_{\odot}. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.Comment: 27 pages. Accepted for publication in the Astrophysical Journa

    CAST constraints on the axion-electron coupling

    Get PDF
    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axiorecombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength ga using the CAST phase-I data (vacuum phase). For ma <~ 10 meV/c2 we find ga gae < 8.1 × 10−23 GeV−1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission
    corecore