12 research outputs found

    Functionally selective inhibition of the oxytocin receptor by retosiban in human myometrial smooth muscle

    Get PDF
    Context: Novel small molecule inhibitors of the oxytocin receptor (OTR) may have distinct pharmacology and mode of action when compared to first generation oxytocin antagonists when used for the prevention of preterm birth. Objective: To determine the mechanism of action of small molecule OTR antagonists retosiban and epelsiban in comparison to the currently used peptide-based compound atosiban. Design: Human myometrial samples were obtained at cesarean section and subjected to pharmacological manipulations to establish the effect of antagonist binding to OTR on downstream signaling. Results: Retosiban antagonism of oxytocin action in human myometrium was potent, rapid and reversible. Inhibition of inositol 1,4,5-trisphosphate (IP3) production followed single site competitive binding kinetics for epelsiban, retosiban and atosiban. Retosiban inhibited basal production of IP3 in the absence of oxytocin. Oxytocin and atosiban, but not retosiban inhibited forskolin and calcitonin stimulated cAMP production. Inhibition of cAMP was reversed by pertussis toxin. Oxytocin and atosiban, but not retosiban and epelsiban, stimulated ERK1/2 activity in a time a concentration dependent manner. Oxytocin and atosiban stimulated cyclo oxygenase 2 (COX2) activity and subsequent production of prostaglandin E2 and F2α. Prostaglandin production was inhibited by rofecoxib, pertussin toxin, and ERK inhibitor U0126. Oxytocin but not retosiban or atosiban stimulated coupling of the OTR to Gαq G-proteins. Oxytocin and atosiban but not retosiban stimulated coupling of the OTR to Gαi G-proteins. Conclusions: Retosiban and epelsiban demonstrate distinct pharmacology when compared to atosiban in human myometrial smooth muscle. Atosiban displays agonist activity at micromolar concentrations leading to stimulation of prostaglandin production

    Intraspecies Variation in the Emergence of Hyperinfectious Bacterial Strains in Nature

    Get PDF
    Salmonella is a principal health concern because of its endemic prevalence in food and water supplies, the rise in incidence of multi-drug resistant strains, and the emergence of new strains associated with increased disease severity. Insights into pathogen emergence have come from animal-passage studies wherein virulence is often increased during infection. However, these studies did not address the prospect that a select subset of strains undergo a pronounced increase in virulence during the infective process- a prospect that has significant implications for human and animal health. Our findings indicate that the capacity to become hypervirulent (100-fold decreased LD50) was much more evident in certain S. enterica strains than others. Hyperinfectious salmonellae were among the most virulent of this species; restricted to certain serotypes; and more capable of killing vaccinated animals. Such strains exhibited rapid (and rapidly reversible) switching to a less-virulent state accompanied by more competitive growth ex vivo that may contribute to maintenance in nature. The hypervirulent phenotype was associated with increased microbial pathogenicity (colonization; cytotoxin production; cytocidal activity), coupled with an altered innate immune cytokine response within infected cells (IFN-β; IL-1β; IL-6; IL-10). Gene expression analysis revealed that hyperinfectious strains display altered transcription of genes within the PhoP/PhoQ, PhoR/PhoB and ArgR regulons, conferring changes in the expression of classical virulence functions (e.g., SPI-1; SPI-2 effectors) and those involved in cellular physiology/metabolism (nutrient/acid stress). As hyperinfectious strains pose a potential risk to human and animal health, efforts toward mitigation of these potential food-borne contaminants may avert negative public health impacts and industry-associated losses

    Oliceridine Exhibits Improved Tolerability Compared to Morphine at Equianalgesic Conditions: Exploratory Analysis from Two Phase 3 Randomized Placebo and Active Controlled Trials

    Full text link
    Abstract Introduction In the management of postoperative acute moderate-to-severe pain, opioids remain an important component. However, conventional opioids have a narrow therapeutic index and are associated with dose-limiting opioid-related adverse events (ORAEs) that can result in worse patient outcomes. Oliceridine, a new intravenous µ-opioid receptor agonist, is shown in nonclinical studies to be biased for G protein signaling (achieving analgesia) with limited recruitment of β-arrestin (associated with ORAEs). In two phase 3 randomized controlled studies of patients with moderate-to-severe acute pain following hard or soft tissue surgery, in which analgesia was measured using Sum of Pain Intensity Differences (SPID) from baseline over 48 and 24 h (SPID-48 and -24 respectively, oliceridine at demand doses of 0.1, 0.35, or 0.5 mg was highly effective compared to placebo, with a favorable safety profile compared to morphine. This exploratory analysis was conducted to determine whether the safety benefits seen with oliceridine persisted when adjusted for equal levels of analgesia compared to morphine. Methods Presence of at least one treatment-emergent ORAE (based on Medical Dictionary for Regulatory Activities [MedDRA]-coded events: hypoxemia, nausea, vomiting, sedation, pruritus, or dizziness) was used as the composite safety endpoint. A logistic regression model was utilized to compare oliceridine (pooled regimens) versus morphine, after controlling for analgesia (using SPID-48 or SPID-24 with pre-rescue scores carried forward 6 h). This analysis excluded patients receiving placebo and was repeated for each study and for pooled data. Results At a given level of SPID-48 or SPID-24, patients receiving oliceridine were less likely to experience the composite safety endpoint. Although not statistically significant at the 0.05 level in the soft tissue model, the odds ratio (OR) showed a consistent numerical trend for oliceridine, being approximately half that observed with morphine in both the hard (OR 0.499; 95% confidence interval [CI] 0.255, 0.976; p = 0.042) and soft (OR 0.542; 95% CI 0.250, 1.175; p = 0.121) tissue studies. Results from the pooled data were consistent with those observed in the individual studies (OR 0.507; 95% CI 0.304, 0.844; p = 0.009). Conclusion Findings from this exploratory analysis suggest that at comparable levels of analgesia, patients receiving oliceridine were less likely to experience the composite safety endpoint consisting of ORAEs compared to patients treated with morphine. Oliceridine Exhibits Improved Tolerability Compared to Morphine at Equianalgesic Conditions: Exploratory Analysis from Two Phase 3 Randomized Placebo and Active Controlled Trials- A Video (MP4 99188 kb)http://deepblue.lib.umich.edu/bitstream/2027.42/173959/1/40122_2021_Article_299.pd

    Maternofetal pharmacokinetics and fetal lung responses in chronically catheterized sheep receiving constant, low-dose infusions of betamethasone phosphate

    No full text
    BACKGROUND: Antenatal steroids are standard of care for cases of anticipated preterm labor to improve neonatal outcomes. However, steroids are potent drugs, and their use in pregnancy remains largely unoptimized. OBJECTIVE: The objective of the study was to measure the maternofetal pharmacokinetics of constant, low-dose intravenous betamethasone phosphate infusions and correlate these data with the transcriptional effect exerted by subclinical betamethasone exposures on the ovine fetal lung. STUDY DESIGN: Thirty-two ewes carrying a single fetus had surgery to catheterize fetal and maternal jugular veins at 116 days of gestation (term, 150 days). Animals were recovered for 2 days and then were randomized to receive 2 sequential maternal intravenous infusions of either (n = 4/group) of the following: 1) saline, 0.125, 0.04, or 0.0125 mg/kg betamethasone phosphate over 3 hours; or 2) saline, 0.25, 0.08, or 0.025 mg/kg betamethasone phosphate over 12 hours. Each infusion was separated by 2 days. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction and an ovine-specific microarray. Plasma betamethasone levels from time-course catheter samples were determined by mass spectrometry. Data were assessed for distribution, variance, and tested by an analysis of variance. RESULTS: Betamethasone was detectable (>1 ng/mL) in fetal plasma only in animals randomized to 0.125 mg/kg 3 hour or 0.250 mg/kg 12 hour infusions. Fetal betamethasone half-lives were 1.7-2.8 times greater than maternal values. At maximum concentration, fetal plasma betamethasone levels were approximately 10% of maternal levels. Compared with saline control, all animals, other than those receiving 0.0125 mg/kg 3 hour betamethasone phosphate infusions, had evidence of dose-dependent glucocorticoid transcriptional responses in the fetal lung. CONCLUSION: Constant maternal betamethasone infusions delivering substantially lower fetal and maternal betamethasone maximal concentrations than those achieved with current clinical treatment protocols were associated with dose-dependent changes in glucocorticoid-response markers in the fetal lung. Further studies to determine the minimally efficacious dose of steroids for improving outcomes in preterm infants should be viewed as a priority
    corecore