115 research outputs found

    Evaporation of particle-stabilised emulsion sunscreen films

    Get PDF
    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here

    Spectrophotometry of thin films of light absorbing particles

    Get PDF
    Thin films of dispersions of light absorbing solid particles or emulsions containing a light absorbing solute all have a non-uniform distribution of light absorbing species throughout the sample volume. This results in non-uniform light absorption over the illuminated area which causes the optical absorbance, as measured using a conventional specular UV-vis spectrophotometer, to deviate from the Beer-Lambert relationship. We have developed a theoretical model to account for the absorbance properties of such films which are shown to depend on the size and volume fraction of the light absorbing particles plus other sample variables. We have compared model predictions with measured spectra for samples consisting of emulsions containing a dissolved light absorbing solute. Using no adjustable parameters, the model successfully predicts the behaviour of non-uniform, light absorbing emulsion films with varying values of droplet size, volume fraction and other parameters

    Baseline incidence of adverse birth outcomes and infant influenza and pertussis hospitalisations prior to the introduction of influenza and pertussis vaccination in pregnancy: a data linkage study of 78 382 mother-infant pairs, Northern Territory, Australia, 1994-2015

    Get PDF
    We conducted probabilistic data linkage of three population datasets for the Northern Territory (NT), Australia, to describe the incidence of preterm births, stillbirths, low birthweight and small for gestational age (SGA) per 1000 NT births; and influenza and pertussis hospitalisations per 1 00 000 NT births in infants <7 months of age, in a pre-maternal vaccination era. The Perinatal Trends dataset (1994–2014) formed the cohort of 78 382 births. Aboriginal mother–infant pairs (37%) had disproportionately higher average annual rates (AR) for all adverse birth outcomes compared to their non-Aboriginal counterparts; rate ratios: preterm births 2.2 (AR 142.4 vs. 64.7); stillbirths 2.3 (AR 10.8 vs. 4.6); low birthweight 2.9 (AR 54 vs. 19); and SGA 1.7 (AR 187 vs. 111). Hospitalisation (2000–2015) and Immunisation Register datasets (1994–2015), showed that influenza hospitalisations (n = 53) and rates were 42.3 times higher in Aboriginal infants (AR 254 vs. 6); and that pertussis hospitalisations (n = 37) were 7.1 times higher in Aboriginal infants (AR 142.5 vs. 20.2) compared to non-Aboriginal infants. These baseline data are essential to assess the safety and effectiveness of influenza and pertussis vaccinations in pregnant women from the NT. Remote living Aboriginal women and infants stand to benefit the most from these vaccines.This study was funded by a National Health and Medical Research Council (NHMRC) Project Grant (APP1091491). LMc was supported by an Australian Postgraduate Award scholarship provided by Charles Darwin University of the Northern Territory and an Enhanced Living scholarship provided by Menzies as part of the Doctor of Philosophy (PhD) program. TS holds a Career Development Fellowship from the NHMRC (GNT 1111657). MJB was supported by an NHMRC Early Career Fellowship (GNT1088733)

    On the use of benzaldehyde to improve the storage stability of one-pot, epoxy ionic liquid formulations

    Get PDF
    A series of adducts were prepared based on the reaction of 1-ethyl-3-methylimidazolium acetate and benzal- dehyde in various stoichiometries (from equimolar reaction to benzaldehyde in 10-fold excess) and the resulting adducts were characterized using nuclear magnetic resonance spectroscopy (¹H, ¹³C, DEPT, and HQSC experi- ments). Differential scanning calorimetry was used to examine the initiating behaviour of the adducts towards mono- and di-functional epoxy resins and the data were used to determine kinetic parameters for the poly- merization. The lower temperature peak, due to carbene formation, is sensitive to adduct concentration; the residual ionic liquid in the adduct mixture contributes towards the initiation of the curing reaction. When a monofunctional epoxy and the 1:1 adduct was subjected to a 2-week period of storage at room temperature and sub-zero temperatures in the freezer, the profiles of the thermograms for the frozen samples do not change considerably over the storage period and the formulation retains a light yellow colour (rather than the viscous, dark red appearance of the formulation stored at room temperature)

    How the sun protection factor (SPF) of sunscreen films change during solar irradiation

    Get PDF
    We have investigated how the sun protection factor (SPF) of different types of sunscreen film varies with “standard” solar irradiation due to photochemical processes. We have used a combination of chemical actinometry, measurement and modelling to estimate the overall quantum yields for the photoprocesses occurring for avobenzone (AVB) and isopentyl p-methoxycinnamate (MC) in either propane-1,2-diol (PG) or squalane (SQ) as solvent. Using the obtained parameters, we have developed models to calculate the evolution of the film spectra and derived SPF values for both non-scattering sunscreen films consisting of solutions of multiple UV filters and for highly scattering Pickering emulsion based sunscreen films. Model calculations for all films are in excellent agreement with film spectra measured as a function of irradiation time using different laboratory light sources. Finally, using the estimated parameters and experimentally validated models, we are able to quantitatively predict how the in vitro SPF values for different film types containing any set combination of UV filter concentrations will vary with time due to photochemical processes induced by irradiation with “standard” sunlight. This provides a useful tool for the rational design and optimisation of new sunscreen formulations

    Evaporation of Sunscreen Films: How the UV Protection Properties Change

    Get PDF
    © 2016 American Chemical Society. We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens

    Examining the nature of the network formation during epoxy polymerization initiated using ionic liquids

    Get PDF
    A commercial diglycidyl ether of bisphenol A monomer (Baxxores™ ER 2200, eew 182 g/mole, DGEBA) is thermally polymerized in the presence of an ionic liquid, 1-ethyl-3-methylimidazolium acetate at a variety of loadings (5–45 wt %). The loss modulus data for cured samples, containing 5 wt % initiator, display at least two thermal transitions and the highest storage modulus occurs in the sample that has been cured for the shortest time at the lowest temperature. Samples that are exposed to higher temperatures (140, 150 °C) yield more heterogenous networks, whereas following exposure to a much shorter/lower temperature cure schedule (80 °C) exhibits a considerably higher damping ability than the other samples, coupled with a lower glass transition temperature. Differential scanning calorimetry reveals that the latter sample achieves a conversion of 95%, while crosslink densities for the DGEBA samples containing 5 wt % and 15 wt % are respectively 9.5 × 10-3 mol. dm-3 and 1.2 × 10-3 mol. dm-3 (when cured to 80 °C) and 2.0 × 10-2 mol. dm-3 and 2.4 × 10-3 mol. dm-3 (when cured to 140 °C)

    Examining the effects of storage on the initiation behaviour of ionic liquids towards the cure of epoxy resins

    Get PDF
    Four structurally related ionic liquids (1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium diethyl phosphate, 1-ethyl-3-methylimidazolium dicyanamide, and 1-ethyl-3-methylimidazolium thiocyanate) are examined for their storage characteristics and its effect on their ability to initiate the cure of epoxy resins. At ambient temperature, epoxy formulations containing 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium thiocyanate display marked colour changes to yield dark red samples with greatly increased viscosity after one day; after six days both samples have undergone vitrification. The epoxy formulation containing 1-ethyl-3-methylimidazolium acetate continued to polymerise even at sub-zero temperatures. Storage in dark bottles retarded the reaction during the 30-minute period that the sample is removed from the freezer prior to an aliquot being taken, but once the autocatalytic low temperature reaction has started, the dark glass no longer provides effective protection. Samples of 1-ethyl-3-methylimidazolium dicyanamide/epoxy were also stored and sampled in the same manner, but no differences were exhibited between the samples in clear and dark brown glass bottles. Infrared and nuclear magnetic resonance studies confirmed that the hygroscopic ionic liquids pick up water readily (coordinating to the H atom at the 2-position on the imidazolium ring), but once dried the initiating ability is lost

    Examining the Influence of Anion Nucleophilicity on the Polymerisation Initiation Mechanism of Phenyl Glycidyl Ether

    Get PDF
    The reaction of phenyl glycidyl ether (PGE) with 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium thiocyanate to initiate the polyetherification reaction was examined using thermal and spectral analysis techniques. The influence of the nucleophilicity of the anions on the deprotonation of the 1-ethyl-3-methylimidazolium cation determined the reaction pathway. The thermal degradation of the ionic liquid liberated the acetate ion and led, subsequently, to the deprotonation of the acidic proton in the imidazole ring. Thus, polymerisation of PGE occurred via a carbene intermediate. The more nucleophilic thiocyanate anion was not sufficiently basic to deprotonate the 1-ethyl-3-methylimidazolium cation, and thus proceeded through direct reaction with the PGE, unless the temperature was elevated and a competing carbene mechanism ensued
    • …
    corecore