362 research outputs found

    Structural Basis for the Autoinhibition of Focal Adhesion Kinase

    Get PDF
    SummaryAppropriate tyrosine kinase signaling depends on coordinated sequential coupling of protein-protein interactions with catalytic activation. Focal adhesion kinase (FAK) integrates signals from integrin and growth factor receptors to regulate cellular responses including cell adhesion, migration, and survival. Here, we describe crystal structures representing both autoinhibited and active states of FAK. The inactive structure reveals a mechanism of inhibition in which the N-terminal FERM domain directly binds the kinase domain, blocking access to the catalytic cleft and protecting the FAK activation loop from Src phosphorylation. Additionally, the FERM domain sequesters the Tyr397 autophosphorylation and Src recruitment site, which lies in the linker connecting the FERM and kinase domains. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition. Our biochemical and structural analysis shows how the architecture of autoinhibited FAK orchestrates an activation sequence of FERM domain displacement, linker autophosphorylation, Src recruitment, and full catalytic activation

    Using Smart Water Meters In (Near) Real-Time On The iWIDGET System

    Full text link
    Devices and technologies to measure and report water consumption at sub-daily intervals are growing in popularity. Data from these devices are creating new opportunities to manage the supply and demand of water in near real-time. To this end, The EU FP7 iWidget project is developing a state-of-the art analytics platform for the integrated management of urban water. Key challenges include extracting useful insights from high-resolution consumption data and exploring a range of decision-support tools for water utilities and consumers. To overcome these challenge iWIDGET is developing a distributed, open, robust, collaborative architecture that allows partners and utilities to collect and process data from a large number of sensors in parallel and analyze data on demand. We present a distributed system that enables flexible, near real-time monitoring of water networks by providing four critical mechanisms. First, a means to regularly poll water utility raw data systems. Second, assimilation of fresh data into a purposely designed, high-performance database. Third, geographically local or remote analytic systems poll the database to incorporate the latest consumption information in their analysis. Lastly, an online portal based platform is used to trigger analysis and review results. A key architectural feature of this system is a loose coupling between central storage and analytic systems. Communication between the central storage and processing components utilizes standard techniques, including WaterML, over RESTful web services. This arrangement avoids restrictions on the underlying technologies in analytical components and allows analytic systems to execute on different operating systems and run-times. The system is under active development and will enable a wide variety of tools for water utilities and individual consumers. Acknowledgement: The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 31827

    MISR Global Aerosol Product Assessment by Comparison with AERONET

    Get PDF
    A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post- launch values reported by Kahn et al. [2005a], varying with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three groupings in size: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom Exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated by the MISR team for possible implementation in future versions of the product

    Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    Get PDF
    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment

    FERM Domain Interaction Promotes FAK Signaling

    Get PDF
    From the results of deletion analyses, the FERM domain of FAK has been proposed to inhibit enzymatic activity and repress FAK signaling. We have identified a sequence in the FERM domain that is important for FAK signaling in vivo. Point mutations in this sequence had little effect upon catalytic activity in vitro. However, the mutant exhibits reduced tyrosine phosphorylation and dramatically reduced Src family kinase binding. Further, the abilities of the mutant to transduce biochemical signals and to promote cell migration were severely impaired. The results implicate a FERM domain interaction in cell adhesion-dependent activation of FAK and downstream signaling. We also show that the purified FERM domain of FAK interacts with full-length FAK in vitro, and mutation of this sequence disrupts the interaction. These findings are discussed in the context of models of FAK regulation by its FERM domain

    Factors that influence the intra-articular rupture pattern of the ACL graft following single-bundle reconstruction

    Get PDF
    The number of revision anterior cruciate ligament (ACL) surgeries performed annually continues to rise. The purpose of this study was to determine the most common rupture pattern in ACL revision cases after previous single-bundle reconstruction. The second aim was to determine the relationship between rupture pattern and patient-specific factors (age, gender, time between the initial ACL reconstruction and re-injury, and etiology/mechanism of failure) and surgical factors (graft type, tunnel angle). This was a cohort study of 60 patients that underwent revision ACL surgery after previous single-bundle ACL reconstruction. Three sports medicine-trained orthopedic surgeons reviewed the arthroscopic videos and determined the rupture pattern of the grafts. The rupture pattern was then correlated to the above-mentioned factors. The inter-observer agreement had a kappa of 0.7. The most common rupture pattern after previous single-bundle ACL reconstruction is elongation of the graft. This is different from the native ACL, which displays more proximal ruptures. With the use of autograft tissue and after a longer period of time, the rupture pattern in revision surgery is more similar to that of the native ACL. The most common rupture pattern after previous single-bundle reconstruction was elongation of the graft. Factors that influenced the rupture pattern were months between ACL reconstruction and re-injury and graft type. Cohort study, Level I

    ACL graft re-rupture after double-bundle reconstruction: factors that influence the intra-articular pattern of injury

    Get PDF
    To determine the most common rupture patterns of previously reconstructed DB-ACL cases, seen at the time of revision surgery, and to determine the influence of age, gender, time between the initial ACL reconstruction and re-injury, tunnel angle and etiology of failure. Forty patients who presented for revision surgery after previous double-bundle ACL reconstruction were enrolled. Three orthopedic surgeons independently reviewed the arthroscopic videos and determined the rupture pattern of both the anteromedial and posterolateral grafts. The graft rupture pattern was then correlated with the previously mentioned factors. The most common injury pattern seen at the time of revision ACL surgery was mid-substance AM and PL bundle rupture. Factors that influenced the rupture pattern (proximal vs. mid-substance and distal rupture vs. elongated, but in continuity) were months between ACL reconstruction and re-injury (P = 0.002), the etiology of failure (traumatic vs. atraumatic) (P = 0.025) and the measured graft tunnel angle (P = 0.048). The most common pattern of graft re-rupture was mid-substance AM and mid-substance PL. As the length of time from the initial DB-ACL reconstruction to revision surgery increased, the pattern of injury more closely resembled that of the native ACL. Evaluation of patients who have undergone double-bundle ACL reconstruction, with a particular focus on graft maturity, mechanism of injury and femoral tunnel angles, and graft rupture pattern assists in preoperative planning for revision surger
    corecore