28 research outputs found

    Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey

    Get PDF
    BACKGROUND: Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH. Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey. RESULTS: The results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ(2) = 5.042, dF = 1, p < 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p < 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p < 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females. CONCLUSIONS: We conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner

    Chemical cues and pheromones in the sea lamprey (Petromyzon marinus)

    Get PDF
    Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Get PDF
    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range

    Cervidins A-D: Novel Glycine Conjugated Fatty Acids from the Tarsal Gland of Male Whitetail Deer, Odocoileus virginianus

    No full text
    Sexually mature male deer are known to rub-urinate, a process where urine is deposited on the tarsal gland. The resulting mixture of compounds from urine and secretions from the tarsal gland are used to signal sex, age, maturation status, and other information at close distance. We examined the difference in metabolites of tarsal gland extracts from male and female whitetail deer, Odocoileus virginianus, harvested during the mating season. Using NMR spectroscopy and high-pressure liquid chromatography linked to high resolution mass spectrometry (HPLC/HR-MS) we identified a homologous series of four male-specific compounds. The compounds are novel glycine conjugates of 10-hydroxy-6,9-oxido fatty acids, which we term cervidins A-D. Cervidins were deemed to possess the absolute configuration 6S,9R,10R through comparison of their spectroscopic data with those of known compounds. In addition, cholesterol 3-sulfate and 3-(3-hydroxyphenyl)-propanoic acid were found to be present in the extracts. Our results clearly demonstrate the diversity of potential semiochemicals contained in the mammalian integument

    A male pheromone in the sea lamprey (Petromyzon marinus): an overview

    No full text
    We conclude that spermiating male sea lamprey release a large amount of 7α,12α,24-trihydroxy-5α-cholan-3-one 24-sulfate via their gills. We suggest that this compound is used to signal the location of their nests to ovulated females downstream. The role of the minor component, 3kACA, has yet to be determined. The selection pressure to signal over a long distance in rapid flowing water may have favored the evolution of a bile acid derivative (as opposed to a gonadal steroid) as a pheromone. Considering the size of the liver, bile acids can be produced in relatively large quantities. Interference with this pheromone system offers an attractive target for selective and environmentally benign control of the sea lamprey

    Synergistic behavioral antagonists of a sex pheromone reduce reproduction of invasive sea lamprey

    No full text
    Summary: Sex pheromones impart maximal attraction when their components are present at optimal ratios that confer balanced olfactory inputs in potential mates. Altering ratios or adding pheromone analogs to optimal mixtures may disrupt balanced olfactory antagonism and result in reduced attraction, however, tests in natural populations are lacking. We tested this hypothesis in sea lamprey (Petromyzon marinus), a fish whose male sex pheromone attracts females when two critical components, 3-keto petromyzonol sulfate (3kPZS) and petromyzonol sulfate (PZS), are present at certain ratios. Here, we report a pheromone analog, petromyzonol tetrasulfate (3sPZS), reduced female attraction to 3kPZS but not to PZS. 3sPZS mixed with additional PZS synergistically disrupted female attraction to the male pheromone and reduced spawning by 97% in a high-density population. Our results provide evidence of balanced olfactory antagonism in a vertebrate and establish a tactic to disrupt spawning of sea lamprey, a destructive invader of the Laurentian Great Lakes

    Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey

    Get PDF
    Abstract Background Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH.Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey. Results The results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ2 = 5.042, dF = 1, p &lt; 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p &lt; 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p &lt; 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females. Conclusions We conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner
    corecore