40 research outputs found

    Edible crabs “Go West”: migrations and incubation cycle of Cancer pagurus revealed by electronic tags

    Get PDF
    Crustaceans are key components of marine ecosystems which, like other exploited marine taxa, show seasonable patterns of distribution and activity, with consequences for their availability to capture by targeted fisheries. Despite concerns over the sustainability of crab fisheries worldwide, difficulties in observing crabs’ behaviour over their annual cycles, and the timings and durations of reproduction, remain poorly understood. From the release of 128 mature female edible crabs tagged with electronic data storage tags (DSTs), we demonstrate predominantly westward migration in the English Channel. Eastern Channel crabs migrated further than western Channel crabs, while crabs released outside the Channel showed little or no migration. Individual migrations were punctuated by a 7-month hiatus, when crabs remained stationary, coincident with the main period of crab spawning and egg incubation. Incubation commenced earlier in the west, from late October onwards, and brooding locations, determined using tidal geolocation, occurred throughout the species range. With an overall return rate of 34%, our results demonstrate that previous reluctance to tag crabs with relatively high-cost DSTs for fear of loss following moulting is unfounded, and that DSTs can generate precise information with regards life-history metrics that would be unachievable using other conventional means

    MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition.

    Get PDF
    Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common. Preclinical data suggest synergy between MET and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response to MET inhibition, depending on EGFR mutation status, independently of MET copy number. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which co-express L858R and T790M EGFR mutations, namely H1975L858R/T790M (EGFR TKI resistant); H1975L858R (sensitized) and H1975WT (wild-type). We assessed cell proliferation in vitro and tumor growth/stroma formation in derived xenograft models in response to a MET TKI (SGX523) and correlated with EGFR-MET dimerization assessed by Förster Resonance Energy Transfer (FRET). SGX523 significantly reduced H1975L858R/T790M cell proliferation, xenograft tumor growth and decreased ERK phosphorylation. The same was not seen in H1975L858R or H1975WT cells. SGX523 only reduced stroma formation in H1975L858R. SGX523 reduced EGFR-MET dimerization in H1975L858R/T790M but induced dimer formation in H1975L858R with no effect in H1975WT. Our data suggests that MET inhibition by SGX523 and EGFR-MET heterodimerisation are determined by EGFR genotype. As tumor behaviour is modulated by this interaction, this could determine treatment efficacy

    Fluorescence in situ hybridisation analysis of bone marrow trephine biopsy specimens; an additional tool in the diagnostic armoury

    No full text
    Fluorescence in situ hybridisation (FISH) analysis is now widely employed in the diagnosis and risk stratification of a wide range of malignant diseases. While this technique is used successfully with formalin-fixed paraffin-embedded (FFPE) sections from numerous tissue types, FISH analysis of FFPE tissue sections from trephine biopsy specimens has been less widely reported, possibly due to technical limitations relating to the decalcification protocols employed. During the last 4 years FISH analysis has been carried out successfully in 42 out of 55 (76%) consecutive trephine biopsy specimens received as part of the standard diagnostic service at our institution. Samples decalcified using EDTA-based protocols were analysed successfully in 31/31 cases (100%), whereas only 11/24 samples (46%) decalcified using formic acid-based protocols were successful. In our experience, FISH analysis of trephine biopsy specimens is a highly reproducible technique and a very useful adjunctive tool in the diagnostic armoury; however, its use in a standard diagnostic setting relies on the use of EDTA-based decalcification protocols.</jats:p

    Review of climate change impacts on marine fish and shellfish around the UK and Ireland

    No full text
    Recent and projected future changes in the temperature and chemistry of marine waters around the UK and Ireland are having, and will in the future have, effects on the phenology, productivity and distribution of marine fish and shellfish. However, the overall consequences are still hard to predict because behaviour, genetic adaptation, habitat dependency and the impacts of fishing on species, result in complex species' responses that may be only partially explained by simple climate envelope predictions.There is a broad body of evidence that climatic fluctuations are playing an important role in changing fish distributions and abundances, which is discernible against the background of trends in abundance due to fishing. During warm periods, southern species have tended to become more prominent and northern species less abundant. However, the changes in distribution are often more complicated than might be expected from a simple climate envelope approach, partly due to ocean circulation patterns which create invasion routes for southern water species into the North Sea from the south and from the north via the continental shelf west of Britain and Ireland.The eventual population-scale impacts of ocean acidification on fish and shellfish are currently very difficult to predict. However, the scant evidence suggests that indirect food web effects arising from the enhanced sensitivity of calcifying planktonic organisms may be important, and the direct effect on fish sensory systems leading to subtle influences on behaviour with possible population-level implications are possible.In British waters, the lesser sandeel (Ammodytes marinus) is identified as being at particular risk from climate change. Owing to its strict association with coarse sandy sediments it is unable to adapt its distribution to compensate for warming sea temperatures. Sandeels are a key link in the food web, linking primary and zooplankton production to top predator

    Visual evidence of reduced seafloor conditions and indications of a cold-seep ecosystem from the Hatton–Rockall basin (NE Atlantic)

    No full text
    High definition video from a towed camera system was used to describe the deep-sea benthic habitats within an elongate depression located at the western margin of Rockall Bank in the Hatton–Rockall Basin. At depths greater than 1190 m, an extensive area (10 km long by 1.5 km wide) of what appeared to be reduced sediments, bacterial mats and flocculent matter indicated possible cold-seep habitat. Plumes of sediment-rich fluid were observed alongside raised elongate features that gave topographic relief to the otherwise flat seafloor. In the deepest section of the depression (1215 m) dense flocculent matter was observed suspended in the water column, in places obscuring the seabed. Away from the bacterial mats, the habitat changed rapidly to sediments dominated by tube-dwelling polychaete worms and then to deep-sea sedimentary habitats more typical for the water depth (sponges and burrowing megafauna in areas of gentle slopes, and coral gardens on steeper slopes)
    corecore