18 research outputs found

    Quantitative Changes in Hydrocarbons over Time in Fecal Pellets of Incisitermes minor May Predict Whether Colonies Are Alive or Dead

    Get PDF
    Hydrocarbon mixtures extracted from fecal pellets of drywood termites are species-specific and can be characterized to identify the termites responsible for damage, even when termites are no longer present or are unable to be recovered easily. In structures infested by drywood termites, it is common to find fecal pellets, but difficult to sample termites from the wood. When fecal pellets appear after remedial treatment of a structure, it is difficult to determine whether this indicates that termites in the structure are still alive and active or not. We examined the hydrocarbon composition of workers, alates, and soldiers of Incisitermes minor (Hagen) (family Kalotermitidae) and of fecal pellets of workers. Hydrocarbons were qualitatively similar among castes and pellets. Fecal pellets that were aged for periods of 0, 30, 90, and 365Β days after collection were qualitatively similar across all time periods, however, the relative quantities of certain individual hydrocarbons changed over time, with 19 of the 73 hydrocarbon peaks relatively increasing or decreasing. When the sums of the positive and negative slopes of these 19 hydrocarbons were indexed, they produced a highly significant linear correlation (R2 = 0.89). Consequently, the quantitative differences of these hydrocarbons peaks can be used to determine the age of worker fecal pellets, and thus help determine whether the colony that produced them is alive or dead

    The Stress Response Factors Yap6, Cin5, Phd1, and Skn7 Direct Targeting of the Conserved Co-Repressor Tup1-Ssn6 in S. cerevisiae

    Get PDF
    Maintaining the proper expression of the transcriptome during development or in response to a changing environment requires a delicate balance between transcriptional regulators with activating and repressing functions. The budding yeast transcriptional co-repressor Tup1-Ssn6 is a model for studying similar repressor complexes in multicellular eukaryotes. Tup1-Ssn6 does not bind DNA directly, but is directed to individual promoters by one or more DNA-binding proteins, referred to as Tup1 recruiters. This functional architecture allows the Tup1-Ssn6 to modulate the expression of genes required for the response to a variety of cellular stresses. To understand the targeting or the Tup1-Ssn6 complex, we determined the genomic distribution of Tup1 and Ssn6 by ChIP-chip. We found that most loci bound by Tup1-Ssn6 could not be explained by co-occupancy with a known recruiting cofactor and that deletion of individual known Tup1 recruiters did not significantly alter the Tup1 binding profile. These observations suggest that new Tup1 recruiting proteins remain to be discovered and that Tup1 recruitment typically depends on multiple recruiting cofactors. To identify new recruiting proteins, we computationally screened for factors with binding patterns similar to the observed Tup1-Ssn6 genomic distribution. Four top candidates, Cin5, Skn7, Phd1, and Yap6, all known to be associated with stress response gene regulation, were experimentally confirmed to physically interact with Tup1 and/or Ssn6. Incorporating these new recruitment cofactors with previously characterized cofactors now explains the majority of Tup1 targeting across the genome, and expands our understanding of the mechanism by which Tup1-Ssn6 is directed to its targets

    Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer

    Get PDF
    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions

    Genome Wide DNA Copy Number Analysis of Serous Type Ovarian Carcinomas Identifies Genetic Markers Predictive of Clinical Outcome

    Get PDF
    Ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancers display a high degree of complex genetic alterations involving many oncogenes and tumor suppressor genes. Analysis of the association between genetic alterations and clinical endpoints such as survival will lead to improved patient management via genetic stratification of patients into clinically relevant subgroups. In this study, we aim to define subgroups of high-grade serous ovarian carcinomas that differ with respect to prognosis and overall survival. Genome-wide DNA copy number alterations (CNAs) were measured in 72 clinically annotated, high-grade serous tumors using high-resolution oligonucleotide arrays. Two clinically annotated, independent cohorts were used for validation. Unsupervised hierarchical clustering of copy number data derived from the 72 patient cohort resulted in two clusters with significant difference in progression free survival (PFS) and a marginal difference in overall survival (OS). GISTIC analysis of the two clusters identified altered regions unique to each cluster. Supervised clustering of two independent large cohorts of high-grade serous tumors using the classification scheme derived from the two initial clusters validated our results and identified 8 genomic regions that are distinctly different among the subgroups. These 8 regions map to 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21 and 20q13.12; and harbor potential oncogenes and tumor suppressor genes that are likely to be involved in the pathogenesis of ovarian carcinoma. We have identified a set of genetic alterations that could be used for stratification of high-grade serous tumors into clinically relevant treatment subgroups
    corecore