722 research outputs found

    Interferometry versus projective measurement of anyons

    Get PDF
    The distinct methods for measuring topological charge in a non-abelian anyonic system have been discussed in the literature: projective measurement of a single point-like quasiparticle and interferometric measurement of the total topological charge of a group of quasiparticles. Projective measurement by definition is only applied near a point and will project to a topological charge sector near that point. Thus, if it is to be applied to a \emph{group} of anyons to project to a \emph{total} charge, then the anyons must first be fused one by one to obtain a single anyon carrying the collective charge. We show that interferometric measurement is strictly stronger: Any protocol involving projective measurement can be simulated at low overhead by another protocol involving only interferometric measurement.Comment: 6 pages, 7 figure

    Non-Abelian Anyons and Topological Quantum Computation

    Full text link
    Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as {\it Non-Abelian anyons}, meaning that they obey {\it non-Abelian braiding statistics}. Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance of a topological quantum computer arises from the non-local encoding of the states of the quasiparticles, which makes them immune to errors caused by local perturbations. To date, the only such topological states thought to have been found in nature are fractional quantum Hall states, most prominently the \nu=5/2 state, although several other prospective candidates have been proposed in systems as disparate as ultra-cold atoms in optical lattices and thin film superconductors. In this review article, we describe current research in this field, focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of topological quantum computation and the physics of the subject using the \nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.Comment: Final Accepted form for RM

    Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial.

    Get PDF
    Apolipoprotein L1 gene (APOL1) G1 and G2 coding variants are strongly associated with chronic kidney disease (CKD) in African Americans (AAs). Here APOL1 association was tested with baseline estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (UACR), and prevalent cardiovascular disease (CVD) in 2571 AAs from the Systolic Blood Pressure Intervention Trial (SPRINT), a trial assessing effects of systolic blood pressure reduction on renal and CVD outcomes. Logistic regression models that adjusted for potentially important confounders tested for association between APOL1 risk variants and baseline clinical CVD (myocardial infarction, coronary, or carotid artery revascularization) and CKD (eGFR under 60 ml/min per 1.73 m(2) and/or UACR over 30 mg/g). AA SPRINT participants were 45.3% female with a mean (median) age of 64.3 (63) years, mean arterial pressure 100.7 (100) mm Hg, eGFR 76.3 (77.1) ml/min per 1.73 m(2), and UACR 49.9 (9.2) mg/g, and 8.2% had clinical CVD. APOL1 (recessive inheritance) was positively associated with CKD (odds ratio 1.37, 95% confidence interval 1.08-1.73) and log UACR estimated slope (β) 0.33) and negatively associated with eGFR (β -3.58), all significant. APOL1 risk variants were not significantly associated with prevalent CVD (1.02, 0.82-1.27). Thus, SPRINT data show that APOL1 risk variants are associated with mild CKD but not with prevalent CVD in AAs with a UACR under 1000 mg/g

    Non-adiabatic geometrical quantum gates in semiconductor quantum dots

    Get PDF
    In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implementedComment: 5 Pages LaTeX, 10 Figures include

    Nucleation of quark matter bubbles in neutron stars

    Full text link
    The thermal nucleation of quark matter bubbles inside neutron stars is examined for various temperatures which the star may realistically encounter during its lifetime. It is found that for a bag constant less than a critical value, a very large part of the star will be converted into the quark phase within a fraction of a second. Depending on the equation of state for neutron star matter and strange quark matter, all or some of the outer parts of the star may subsequently be converted by a slower burning or a detonation.Comment: 13 pages, REVTeX, Phys.Rev.D (in press), IFA 93-32. 5 figures (not included) available upon request from [email protected]

    D3-branes on the Coulomb branch and instantons

    Full text link
    The relative coefficients of higher derivative interactions of the IIB effective action of the form C^4, (D F_5)^4, F_5^8, ... (where C is the Weyl tensor and F_5 is the five-form field strength) are motivated by supersymmetry arguments. It is shown that the classical supergravity solution for N parallel D3-branes is unaltered by this combination of terms. The non-vanishing of \zeroC^2 in this background (where \zero C is the background value of the Weyl tensor) leads to effective O(1/alpha') interactions, such as C^2 and Lambda^8 (where Lambda is the dilatino). These contain D-instanton contributions in addition to tree and one-loop terms. The near horizon limit of the N D3-brane system describes a multi-AdS_5xS^5 geometry that is dual to \calN=4 SU(N) Yang-Mills theory spontaneously broken to S(U(M_1)x...xU(M_r)). Here, the N D3-branes are grouped into r coincident bunches with M_r in each group, with M_r/N = m_r fixed as N goes to infinity. The boundary correlation function of eight Lambda's is constructed explicitly. The second part of the paper considers effects of a constrained instanton in this large-N Yang-Mills theory by an extension of the analysis of Dorey, Hollowood and Khoze of the one-instanton measure at finite N. This makes precise the correspondence with the supergravity D-instanton measure at leading order in the 1/N expansion. However, the duality between instanton-induced correlation functions in Yang-Mills theory and the dual supergravity is somewhat obscured by complications relating to the structure of constrained instantons.Comment: 30 pages, JHEP style. Typos corrected and minor clarifications adde

    Gender Difference or Parallel Publics? The Dynamics of Defense Spending Opinions in the United States, 1965-2007

    Get PDF
    Gender is now recognized as an important dividing line in American political life, and scholars have accumulated evidence that national security issues are an important reason for gender differences in policy preferences. We therefore expect that the dynamics of support for defense spending among men and women will differ. In contrast, several scholars have shown that population subgroups exhibit a ‘‘parallel’’ dynamic in which the evolution of their preferences over time is very similar, despite differences in the average level of support. Unfortunately, there is little time series evidence on gendered reactions to policy, including defense spending, that would allow one to arbitrate between these competing perspectives. In this research note, we assemble a time series of support for defense spending among men and women and model the determinants of that support for the period 1967–2007. We find that women are on average less supportive of defense spending than are men. However, we also find that the over time variation of support for defense spending among men and women is very similar—each is conditioned principally by the past year’s change in defense spending and occasionally by war casualties and a trade-off between defense and civilian spending

    Modulation of Kv Channel Expression and Function by TCR and Costimulatory Signals during Peripheral CD4+ Lymphocyte Differentiation

    Get PDF
    Ionic signaling pathways, including voltage-dependent potassium (Kv) channels, are instrumental in antigen-mediated responses of peripheral T cells. However, how Kv channels cooperate with other signaling pathways involved in T cell activation and differentiation is unknown. We report that multiple Kv channels are expressed by naive CD4+ lymphocytes, and that the current amplitude and kinetics are modulated by antigen receptor–mediated stimulation and costimulatory signals. Currents expressed in naive CD4+ lymphocytes are consistent with Kv1.1, Kv1.2, Kv1.3, and Kv1.6. Effector CD4+ cells generated by optimal TCR and costimulation exhibit only Kv1.3 current, but at approximately sixfold higher levels than naive cells. CD4+ lymphocytes anergized through partial stimulation exhibit similar Kv1.1, Kv1.2, and/or Kv1.6 currents, but approximately threefold more Kv1.3 current than naive cells. To determine if Kv channels contribute to the distinct functions of naive, effector, and anergized T cells, we tested their role in immunoregulatory cytokine production. Each Kv channel is required for maximal IL-2 production by naive CD4+ lymphocytes, whereas none appears to play a role in IL-2, IL-4, or IFN-γ production by effector cells. Interestingly, Kv channels in anergized lymphocytes actively suppress IL-4 production, and these functions are consistent with a role in regulating the membrane potential and calcium signaling

    On renormalization group flows and the a-theorem in 6d

    Full text link
    We study the extension of the approach to the a-theorem of Komargodski and Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton effective action is obtained up to 6th order in derivatives. The anomaly flow a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this action. It then appears at order p^6 in the low energy limit of n-point scattering amplitudes of the dilaton for n > 3. The detailed structure with the correct anomaly coefficient is confirmed by direct calculation in two examples: (i) the case of explicitly broken conformal symmetry is illustrated by the free massive scalar field, and (ii) the case of spontaneously broken conformal symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the latter example, the dilaton is a dynamical field so 4-derivative terms in the action also affect n-point amplitudes at order p^6. The calculation in the (2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4. Given the confirmation in two distinct models, we attempt to use dispersion relations to prove that the anomaly flow is positive in general. Unfortunately the 4-point matrix element of the Euler anomaly is proportional to stu and vanishes for forward scattering. Thus the optical theorem cannot be applied to show positivity. Instead the anomaly flow is given by a dispersion sum rule in which the integrand does not have definite sign. It may be possible to base a proof of the a-theorem on the analyticity and unitarity properties of the 6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure
    • …
    corecore