2,613 research outputs found

    The Female Intruder: Women in Fifth-Century Drama

    Get PDF
    This is the published version, also available here: http://www.jstor.org/stable/268229

    Management of Head and Neck Melanoma

    Get PDF

    Structural investigations of phosphorus-nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3Cl(6-n)(NHBut)(n) derivatives

    Get PDF
    A series of compounds of the N3P3Cl(6-n)(NHBut)n family (where n = 0, 1, 2, 4 and 6) are presented and their molecular parameters are related to trends in physical properties, which provides insight into a potential reaction mechanism for nucleophilic substitution. The crystal structures of N3P3Cl5(NHBut) and N3P3Cl2(NHBut)4 have been determined at 120K and those of N3P3Cl6 and N3P3Cl4(NHBut)2 have been re-determined at 120K. These are compared with the known structure of N3P3(NHBut)6 studied at 150K. Trends in molecular parameters (phosphazene ring, P-Cl & P-N(HBut) distances, PCl2 angles and endo- and exo-cyclic phosphazene ring parameters) across the series are observed. Hydrogen-bonding motifs are identified, characterised and compared. Both the molecular and hydrogen bonding parameters are related to the electron distribution in bonds and the derived basicities of the cyclophosphazene series of compounds. These findings provide evidence for a proposed mechanism for nucleophilic substitution at a phosphorus site bearing a PCl(NHBut) moiety

    Deep phylogeographic structure may indicate cryptic species within the Sparid genus Spondyliosoma

    Get PDF
    Two geographically nonoverlapping species are currently described within the sparid genus Spondyliosoma: Spondyliosoma cantharus (Black Seabream) occurring across Mediterranean and eastern Atlantic waters from NW Europe to Angola and S. emarginatum (Steentjie) considered endemic to southern Africa. To address prominent knowledge gaps this study investigated range‐wide phylogeographic structure across both species. Mitochondrial DNA sequences revealed deep phylogeographic structuring with four regionally partitioned reciprocally monophyletic clades, a Mediterranean clade and three more closely related Atlantic clades [NE Atlantic, Angola and South Africa (corresponding to S. emarginatum)]. Divergence and distribution of the lineages reflects survival in, and expansion from, disjunct glacial refuge areas. Cytonuclear differentiation of S. emarginatum supports its validity as a distinct species endemic to South African waters

    Light scattering in a turbulent cloud: Simulations to explore cloud-chamber experiments

    Get PDF
    Radiative transfer through clouds can be impacted by variations in particle number size distribution, but also in particle spatial distribution. Due to turbulent mixing and inertial effects, spatial correlations often exist, even on scales reaching the cloud droplet separation distance. The resulting clusters and voids within the droplet field can lead to deviations from exponential extinction. Prior work has numerically investigated these departures from exponential attenuation in absorptive and scattering media; this work takes a step towards determining the feasibility of detecting departures from exponential behavior due to spatial correlation in turbulent clouds generated in a laboratory setting. Large Eddy Simulation (LES) is used to mimic turbulent mixing clouds generated in a laboratory convection cloud chamber. Light propagation through the resulting polydisperse and spatially correlated particle fields is explored via Monte Carlo ray tracing simulations. The key finding is that both mean radiative flux and standard deviation about the mean differ when correlations exist, suggesting that an experiment using a laboratory convection cloud chamber could be designed to investigate non-exponential behavior. Total forward flux is largely unchanged (due to scattering being highly forward-dominant for the size parameters considered), allowing it to be used for conditional sampling based on optical thickness. Direct and diffuse forward flux means are modified by approximately one standard deviation. Standard deviations of diffuse forward and backward fluxes are strongly enhanced, suggesting that fluctuations in the scattered light are a more sensitive metric to consider. The results also suggest the possibility that measurements of radiative transfer could be used to infer the strength and scales of correlations in a turbulent cloud, indicating entrainment and mixing effects

    Just Care: Learning From and With Graduate Students in a Doctor of Nursing Practice Program

    Get PDF
    In 2010, Fairfield University, a Jesuit Carnegie Masters Level 1 University located in the Northeast, established its first doctoral -level program: the Doctorate of Nursing Practice (DNP). In a developing program such as the DNP, some of the most pressing concerns of current rhetoric and writing in the disciplines align and interact with the education of clinical nurse leaders — questions of transfer, ethical practice, reflection, assignment desi gn, and community engagement. Clearly, nursing scholar/practitioners and writing scholar/practitioners have much to offer and to learn from each other. In this article, we trace the initial action -research undertaken by the School of Nursing, the Writing C enter, and the Center for Academic Excellence to document, reflect upon, and support the reading and writing experiences of DNP graduate students as they negotiate the new curriculum

    Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices

    Get PDF
    Atmospheric solution based processes are being developed for the fabrication of thin film photovoltaic devices. Deposition techniques such as electrodeposition, spin coating, spraying or printing are promising techniques to increase the throughput and reduce the cost per Watt of Copper-Indium-Gallium-Selenide (CIGS), Copper-Zinc-Tin-Sulphide (CZTS) and perovskite thin film solar technologies. All these technologies require pre-treatment of the substrate prior to the deposition of the thin film and ideally this pretreatment should also be performed at atmospheric pressure. Results presented in this paper show that use of an atmospheric-pressure plasma is highly effective in activating the surface of substrates commonly used in thin film photovoltaic (PV) device fabrication. Surface activation improves the adhesion of thin films. The use of an atmospheric activation process is compatible with a continuous vacuumfree PV fabrication process. Soda lime glass (SDL) and fluorine doped tin oxide (FTO) coated glass are substrates commonly used in the fabrication of photovoltaic modules. These substrates have been surface treated using a He/O2 atmospheric-pressure plasma, resulting in increased surface energy as evidenced by Water Contact Angle (WCA) measurements. The pre-treatment reduces adventitious surface contamination on the substrates as shown using X-ray Photoelectron Spectroscopy (XPS) measurements. The advantages of using the atmospheric plasma surface pre-treatment has been demonstrated by using it prior to atmospheric deposition of Cadmium Sulphide (CdS) thin films using a sonochemical process. The CdS thin films show pinhole-free coverage, faster growth rates and better optical quality than those deposited on substrates pre-treated by conventional wet and dry processes

    The Fueling of Nuclear Activity: II. The Bar Properties of Seyfert and Normal Galaxies

    Full text link
    We use a recent near-infrared imaging survey of samples of Seyfert and normal galaxies to study the role of bars in the fueling of nuclear activity. The active galaxy sample includes Seyfert galaxies in the Revised Shapely-Ames (RSA) and Sandage & Tammann's (1987) extension to this catalog. The normal galaxies were selected to match the Seyfert sample in Hubble type, redshift, inclination and blue luminosity. All the galaxies in both samples classified as barred in the RSA catalog are also barred in the near-infrared. In addition, ~55% of the galaxies classified as non-barred in the RSA show evidence for bars at 2.1 microns. Overall, ~70% of the galaxies observed show evidence for bar structures. The incidence of bars in the Seyfert and normal galaxies is similar, suggesting Seyfert nuclei do not occur preferentially in barred systems. Furthermore, a slightly higher percentage of normal galaxies have multiple-bar structures.Comment: aastex 4.0, accepted for publication in the Astrophysical Journal Letter
    corecore