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Abstract

Two geographically nonoverlapping species are currently described within the sparid

genus Spondyliosoma: Spondyliosoma cantharus (Black Seabream) occurring across Med-

iterranean and eastern Atlantic waters from NW Europe to Angola and S. emarginatum

(Steentjie) considered endemic to southern Africa. To address prominent knowledge

gaps this study investigated range-wide phylogeographic structure across both species.

Mitochondrial DNA sequences revealed deep phylogeographic structuring with four

regionally partitioned reciprocally monophyletic clades, a Mediterranean clade and

three more closely related Atlantic clades [NE Atlantic, Angola and South Africa

(corresponding to S. emarginatum)]. Divergence and distribution of the lineages reflects

survival in, and expansion from, disjunct glacial refuge areas. Cytonuclear differentia-

tion of S. emarginatum supports its validity as a distinct species endemic to

South African waters. However, the results also indicate that S. cantharus may be a

cryptic species complex wherein the various regional lineages represent established/

incipient species. A robust multilocus genetic assessment combining morphological

data and detailing interactions among lineages is needed to determine the full diversity

within Spondyliosoma and the most adequate biological and taxonomic status.

K E YWORD S
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1 | INTRODUCTION

The Sparidae (seabreams) are demersal fishes commonly found at a range

of depths in temperate and tropical marine waters with maximum species

diversity in the NE Atlantic Ocean and Mediterranean Sea (Bauchot &

Hurau, 1986). Within this family the genus Spondyliosoma is currently rec-

ognized as comprising two species, Spondyliosoma cantharus (black sea-

bream) and Spondyliosoma emarginatum (Steentjie). S. cantharus exhibits a

wide geographical range from Scandinavia to Angola and occurring

around the islands of Madeira, Cape Verde and the Canary Islands in the

eastern Atlantic and throughout the Mediterranean Sea (Bauchot &

Hurau, 1986). S. emarginatum is considered endemic to southern Africa.

The gap between the ranges of the two species corresponds with the

location of the Benguela Upwelling System (BUS), an established bio-

graphic boundary for a number of taxa (Grant & Bowen, 1998; Henriques

et al., 2012, 2014, 2015). Throughout their respective ranges both species

represent important fisheries resources and there are indications that

stocks may be overfished (Correia et al., 2012).

Genetic studies have provided considerable insight into evolu-

tionary processes in the marine realm as well as identification ofNiall J McKeown and Michael P Gwilliam should be considered joint first authors.
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population units for fishery management. There has been only one

genetic study including Spondyliosoma (Bargelloni et al., 2003). This

focused on the relationship between Mediterranean and NE Atlantic

populations (the latter represented only by a single site in Portugal),

and indicated reciprocally monophyletic clades present in the two

areas. To date there have been no genetic studies of S. emarginatum

or of the wider Atlantic distribution of S. cantharus.

The limited spatial genetic data available for Spondyliosoma underpins

a number of prominent knowledge gaps relating to the proper definition

of operational units (species to population) that may compromise both

conservation of biodiversity and sustainable fishery management. First,

the phylogenetic relationship between S. cantharus and S. emarginatum,

and thus their validity as distinct phylogenetic species, remains untested.

This relationship is also of interest regarding the role of the BUS as a bio-

geographic barrier across SE Atlantic coasts. The BUS has been associated

with prolonged genetic isolation and speciation in some groups, with

other fish species reporting signals of historical and/or recurrent gene

flow across it (Henriques et al., 2015; Reid et al., 2016; Sala-Bozano

et al., 2009). Second, at the intraspecific level phylogeographic studies can

provide insight into historical and recurrent population processes. The

Pleistocene glaciations have left pronounced signatures of divergence in,

and expansion from, glacial refugia in a number of marine species (Maggs

et al., 2008). Phylogeographic studies can thus identify endemic lineages

that are important and irreplaceable components of a species' evolution-

ary potential and warrant conservation prioritization. From a fisheries

management perspective spatial genetic data can also resolve patterns of

population connectivity/isolation useful for the optimization of spatial

management strategies (Reiss et al., 2009; but see Waples &

Gaggiotti, 2006; Hauser & Carvalho, 2008). Phenotypic studies have reso-

lved regional differences among Atlantic S. cantharus (Neves

et al., 2018, 2019) and genetic data could provide information as to what

extent such phenotypic differences reflect population isolation or envi-

ronmental driven variation. The identification of demographically inde-

pendent populations is important for Spondyliosoma as the species' slow

growth and habitat specificity may make such populations particularly vul-

nerable to overexploitation (Neves et al., 2017; Pinder et al., 2017).

This study aimed to investigate phylogeographic structuring across a

large portion of the range of S. cantharus and S. emarginatum using mito-

chondrial DNA (mtDNA) sequence variation. As an initial focus was to

assess the species status of S. emarginatum, nuclear DNA differentiation

was also assayed between S. emarginatum from South Africa (southern

Benguela subsystem) and S. cantharus from Angola (the putative south-

ern limit of S. cantharus and within the northern Benguela subsystem), i.

e., the geographically closest representatives of the two species.

2 | MATERIALS AND METHODS

2.1 | Sample collection and inclusion of
GenBank data

This study complied with all ethical requirements of the Journal of Fish

Biology and local authorities. No fish were killed or interfered with in

any way as all samples were in the form of ethanol preserved fin clips

acquired from local fishers. Samples of S. emarginatum were collected

from six sites in South African waters, while S. cantharus were col-

lected from four sites in Angolan waters (Table 1 and Figure 1). A NE

Atlantic S. cantharus sample was collected from Cardigan Bay (Wales)

(Figure 1). DNA extraction followed the phenol-chloroform method

described by Sambrook et al., (1989). To increase geographical repre-

sentation in subsequent analyses of mtDNA cytochrome oxidase I

(COI) sequence variation, we also included S. cantharus COI sequences

deposited on GenBank from barcoding studies around Portugal (Costa

et al., 2012) and Turkey (Keskin & Atar, 2013). We also included three

sequences (GenBank accession no. KJ012436, KJ012438 and

KJ012439) from a barcoding study of samples collected at an Italian

fish market (Armani et al., 2015). Additional samples from Armani

et al. (2015) had shorter sequences than our final alignment, so were

omitted from the main results but their phylogenetic relationships

were also tested by truncating our overall sequence alignment

accordingly.

2.2 | mtDNA analysis

A fragment of the cytochrome oxidase I gene was PCR amplified

using primers SCCOIF (50-GCTTGAGCCGGAATAGTAG-30) and

SCCOIR (50-TTGGTAAAGAATTGGGTCTCC-30) designed from

GenBank S. cantharus sequences. Similarly, new primers (SCRF50-

CACACATAATGTTAGAGATATAGGA-30 and SCRR 50-TGCATAAG

TGATTTCATGAGCATAAT-30) were designed to permit PCR amplifica-

tion of the first hypervariable region of the mtDNA control region (CR).

PCRs for both mtDNA regions comprised 10 μl of BIOMIX (BioLine),

1.0 pMol of primer (both forward and reverse), 6 μl of template DNA

and 2 μl of sterile distilled water, giving a total reaction volume of 20 μl.

The PCR thermoprofile was: 300 s at 94�C, then 40 cycles of 30 s at

94�C, 30 s at 50�C (CR-51�C) and 60 s at 72�C, with a final extension

step of 300 s at 72�C. Amplicons were sequenced with the respective

forward primer using BigDye technology and an ABI 3730 DNA ana-

lyser (Applied Biosystems).

Analyses were performed using ARLEQUIN (Excoffier &

Lischer, 2010) unless stated otherwise. Genetic diversity was esti-

mated using haplotype (h) and nucleotide (π) diversity. A phylogenetic

tree among COI haplotypes with a Spicara maena (GenBank:

AP009164) outgroup was constructed using maximum likelihood

(ML) implemented in MEGA v 7 (Kumar et al., 2016) using the HKY

model identified as most suitable by MRMODELTEST

(Nylander, 2004) with the nearest-neighbor-interchange heuristic

method and weak branch swap filter. Nodal support values were esti-

mated from 500 nonparametric bootstrap replicates. Phylogenetic

relationships were also assessed using median joining networks con-

structed in NETWORK (www.fluxus-engineering.com/sharenet.htm).

Pairwise divergences between and within lineages were estimated

using mean K2P distances (Kimura, 1980). Divergence times among

lineages (COI) were estimated in BEAST 1.6.1 (Drummond &

Rambaut, 2007) using a strict molecular clock and Yule process.
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Testing using MEGA indicated that sequence data did not deviate

from a model of constant evolutionary rate. The Markov Chain was

run for 50 × 106 iterations and repeated once with Tracer, used to

check for convergence and an effective sample size (ESS) of >200.

The maximum clade credibility tree was estimated in TreeAnnotator

with the first 10% of trees discarded during the burn-in. To comple-

ment this phylogenetic-based analysis, divergence times among

populations were also estimated using the coalescent approach

implemented in IMa (Hey, 2010) with 1 × 106 burn in generations and

5 × 106 sampling generations to ensure the minimum ESS was >50

(Hey & Nielsen, 2004). Metropolis coupling with a geometric heating

scheme for one cold chain and 59 heated chains was used for each run,

which was then replicated using a different random number seed. Runs

were also performed using a combination of priors for splitting time,

maximum population size and migration rate other than the default

values. The results converged on the same stationary distributions.

Differentiation between pairs of samples was quantified using

pairwise ΦST with significance assessed by 10,000 permutations. Fu's

Fs (Fu, 1997) and Tajima's D (Tajima, 1989) were used to test for devi-

ations from mutation-drift equilibrium (significance assessed after

10,000 permutations). Mismatch distributions, the frequency distribu-

tions of pairwise differences between haplotypes within a sample and

simulated distributions under a model of demographic expansion were

compared using the sum of squared deviations (SSD) as a test statistic

with significance assessed after 10,000 bootstrap replications. The

timing of expansions (T) was estimated from T = τ/2u (Rogers &

Harpending, 1992). For mutation rate dependent analyses we

employed (a) the widely accepted 1.2% per million years divergence

rate (0.006 substitutions per site per million years) for COI

(Bermingham et al., 1997) and (b) the 11% per million years divergence

rate (0.055 substitutions per site per million years) for CR that has

been widely used for sparids (Bargelloni et al., 2003; Coscia

et al., 2012; Sala-Bozano et al., 2009).

2.3 | Microsatellite analysis

Eighteen microsatellite loci developed previously for a number of

Sparid species were tested for PCR amplification in Spondyliosoma

(Supporting Information Table S1). Following testing, four loci

reporting reliable amplification (DsaMS27, DsaMS34 and DsaMS48

from Perez et al., (2008) and Dvul84 from Roques et al. (2007)) were

selected for genotyping of samples from two locations in both

South Africa and Angola. Loci were individually amplified by PCR and

genotypes separated on an AB3730 DNA sequencer with alleles sized

using the software Peak Scanner (Applied Biosystems).

Genetic variation within samples was characterized using the

number of alleles (NA), allelic richness (AR), observed heterozygosity

(HO) and expected heterozygosity (HE), all calculated using GENALEX

6.2 (Peakall & Smouse, 2006). Genotype frequency conformance to

Hardy–Weinberg expectations (HWE) and genotypic linkage equilib-

rium between pairs of loci were tested using exact tests (10,000

demorisations, 10,000 batches, 5000 iterations) in GENEPOP 3.3

(Rousset, 2008). Genetic differentiation among samples was quanti-

fied using global and pairwise FST values with significance assessed

with P values following 10,000 permutations in FSTAT

(Goudet, 1995). FST values were also estimated using the null allele

correction method in FreeNA (Chapuis and Estoup, 2007). The Bayes-

ian clustering method implemented in the program STRUCTURE

(Pritchard et al., 2000) was used to identify the most probable number

of genetic clusters (K) (from a range of 1–5) within the data. The anal-

ysis was performed both with and without prior sample information

(as recommended by Hubisz et al., 2009) and with multiple model

assumptions (admixture/no admixture and correlated/noncorrelated

allele frequencies, as recommended by Pritchard et al., 2000). Each

run consisted of a burn-in of 106 steps followed by 5 × 106 steps with

three runs performed for each K model tested. Optimal models were

assessed using L(K).

TABLE 1 Sample information
including geographical region and
ascribed taxon, specific sites and
associated numbers of individuals for
which mtDNA cytochrome oxidase I,
mtDNA control region and microsatellite
data were collected

Region Site/source Sample size COI CR Microsatellites

South Africa

S. emarginatum

KwaZulu-Natal (1) 5 5

Port Elizabeth (2) 6 6

Tsitsikamma (3) 9 6 6

Mossel Bay (4) 21 9 15 21

False Bay (5) 30 9 13 27

Langebaan (6) 1 1

Angola

S. cantharus

Tombua (7) 15 9 5

Namibe (8) 30 11 12 29

Lucira (9) 15 8 5

Benguela (10) 29 13 9 27

NE Atlantic

S. cantharus

Portugal (GenBank) 16

Aberystwyth (11) 16 15 16

Mediterranean

S. cantharus

Turkey (GenBank) 21

Note: Numbers in brackets after sites correspond to locations in Figure 1, or in the case of GenBank indicate data obtained from previous studies. COI,

cytochrome oxidase I; CR, control region.
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3 | RESULTS

3.1 | MTDNA phylogenetics and phylogeography

For COI the final alignment consisted of 550 base pairs across

120 individuals (74 sequenced de novo in this study), identifying 24 dif-

ferent haplotypes with an overall haplotype diversity of 0.52

(π = 0.002). The corresponding ML tree revealed four reciprocally

monophyletic clades with clear regional affinities (Figure 2). The

South African (S. emarginatum) and Angolan (S. cantharus) samples

each formed distinct reciprocally monophyletic clades. The UK and

Portuguese samples also clustered into a reciprocally monophyletic

clade, with a nonsignificant within-clade ΦST of 0.002 between these

samples. Accordingly, this group is hereafter referred to as the NE

Atlantic clade. The remaining Turkish and Italian sequences clustered

into a highly divergent and reciprocally monophyletic clade (hereafter

referred to as the Mediterranean clade) with the exception of one

sequence (Genbank Accession KJ012439) which was identical to Hap-

lotype 13 of the NE Atlantic clade.

The COI phylogeny revealed a clear hierarchical pattern with an

initial divergence between the Mediterranean and the three Atlantic

clades. BEAST analysis estimated the Mediterranean–Atlantic diver-

gence to have occurred 2.1 million years BP with the subsequent

divergence of the three Atlantic clades occurring around 1.3 million

years BP. IMa analysis supported a similar time fame of

Mediterranean–Atlantic divergence of ~2 million years BP, with sub-

sequent divergence among the Atlantic clades estimated to have

occurred ~1 million years BP.

For the control region (CR) a 436 bp sequence was aligned across

87 individuals revealing 76 polymorphic sites and 34 distinct
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F IGURE 1 Map showing the approximate sample site locations around Southern Africa (b, sites 1–10) and Cardigan Bay (a, site 11). Numbers
correspond to samples as in Table 1. The approximate location of the Benguela upwelling system between South Africa and Angola is depicted
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haplotypes. Overall haplotype diversity was higher (0.70) than for

COI. Phylogenetic analysis resolved the same three reciprocally mono-

phyletic and geographically disjunct Atlantic clades as for COI

(Figure 3). Sequence divergence between clades was approximately

2–2.5 fold higher for CR than for the COI (Table 2).

For both the COI and CR sequences all ΦST values between sam-

ples within regions (South Africa and Angola) were nonsignificant, and

so diversity and demographic test results are reported for each

phylogroup (Table 3). Haplotype diversity was generally higher for the

Mediterranean clade and lowest for the Angolan clade (Table 3). Mis-

match distribution analyses for COI reported conformance to models

of population expansions for the Angolan and NE Atlantic clades, but

not for the Mediterranean and S. emarginatum clades (Table 3). How-

ever, as for the other Atlantic clades, the S. emarginatum clade did

report conformance to an expansion model among CR sequences.

Estimated times of expansion events were in all cases considerably

more recent for the CR than COI. Significant deviations from neutral

expectations (i.e., Fu's Fs and Tajima's D tests) were generally found

for the same phylogroup–gene region combinations for which mis-

match distribution analysis supported demographic expansions

(Table 3). Accordingly, Fu's Fs and Tajima's D were both not significant

in the case of the Mediterranean group.

3.2 | Microsatellite analysis of South African
S. emarginatum and Angolan S. cantharus

All loci were variable in each sample with the total number of alleles

per locus ranging from 18 (DsaMS48) to 28 (DsaMS34), with an aver-

age of 21.75 alleles across all loci. Whilst levels of variability differed

across loci, variability indices at each locus were similar across all sam-

ples (Table 4). Significant deviations from HWE were found in 14 out
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Hap 12

Hap 11 NE Atlan�c

South Africa
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Mediterranean

S. emarginatum
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F IGURE 2 ML bootstrap consensus tree of the phylogenetic relationships among distinct COI haplotypes with S. maena used as an outgroup
root. Node labels denote the percentage bootstrap support above the user inferred 50% cut-off
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of 16 locus/sample comparisons, in all cases due to heterozygote defi-

cits, with nonsignificant test results only for DsaMS27 and Dvul84 in

Mossel Bay. There was no evidence of linkage disequilibrium between

any locus pair. FST values were significant in all comparisons between

Angolan and South African samples, but not for comparisons within

either region with a similar pattern among null allele corrected values

(Table 5). Assignment of individuals using STRUCTURE supported this

pattern, identifying K = 2 as the optimal model with a clear par-

titioning of Angolan and S. emarginatum individuals (Figure 4).

4 | DISCUSSION

The aim of this study was to assess macrogeographical genetic struc-

ture in Spondyliosoma and in doing so provide the first genetic-based

assessment of the species status of S. emarginatum. mtDNA revealed

a strong genetic structure comprising four reciprocally monophyletic

clades with geographically disjunct distributions. Three of these clades

occur among S. cantharus and are denoted according to their regional

associations as Mediterranean, NE Atlantic and Angolan. The fourth

clade comprised the S. emarginatum (South African) samples. Integra-

tion of samples from GenBank indicate that the NE Atlantic and Medi-

terranean clades identified here correspond to the Atlantic and

Mediterranean clades described by Bargelloni et al. (2003). The overall

phylogeny revealed the NE Atlantic and Angolan S. cantharus clades

to be more closely related to the S. emarginatum clade than to the

Mediterranean clade. The study therefore not only reveals hitherto

unidentified lineages and pronounced genetic divergence within

Atlantic waters but also reveals S. cantharus, as currently described, to

be paraphyletic with respect to S. emarginatum.

Range contraction and expansion events associated with the

Quaternary glaciations (2.5 MYA up until the Last Glacial Maximum

26.5–19KY BP) have profoundly shaped the phylogeographic struc-

ture of many marine taxa (Maggs et al., 2008). Chronic isolation in dis-

junct areas of persistence (glacial refuge) has contributed to genetic

divergence, regionally associated phylogroups and even speciation.

Signatures of such processes are strikingly evident in the phy-

logeography of Spondyliosoma. The data indicate that following an

earlier divergence from the Mediterranean clade (~2 million years BP)

the three Atlantic clades [NE Atlantic, Angola and S. emarginatum

(South Africa)] diverged from each other around the same time (~1 mil-

lion years BP). This chronology aligns well with established patterns of

divergence between the Atlantic and Mediterranean (Bargelloni

et al., 2003; Patarnello et al., 2007), within the eastern Atlantic

(Durand et al., 2005, 2013; Miralles et al., 2014; Sala-Bozano

et al., 2009) and across the Benguela upwelling system (Henriques

et al., 2014, 2016) reported for other marine taxa. The Atlantic clades

also exhibited signatures (unimodal mismatch distributions and nega-

tive Fu's FS and Tajima's D indices) of population demographic expan-

sions after periods of reduced population sizes. Similar patterns in

other species have been linked to declines and expansions during

Pleistocene glacial and interglacial periods, respectively (Debes

et al., 2008). There is growing appreciation that the accuracy of esti-

mated times of demographic events may in many cases be com-

promised by the time-dependency of user-inferred mutation rates

(Grant, 2015; Ho et al., 2005, 2007; Hoareau, 2015; McKeown

et al., 2019). Furthermore, the protoygynous hermaphrodite life cycle

of both Spondyliosoma species (Goncalves & Erzini, 2000; Mouine

et al., 2010) may confound estimates assuming a constant 1/4Ne for

mtDNA compared to nuclear loci (Coscia et al., 2016). However, while

Angola

NE Atlan�c

South Africa/
S. emarginatum

35bp

8.01%

40bp

9.17%

F IGURE 3 Median joining haplotype network among control
region haplotypes. Node sizes are proportional to the observed
abundance. Minimum number of substitution differences and
percentage sequence divergence between clades are reported on the
connecting branches

TABLE 2 Mean sequence
divergence between regional clades for
COI (below diagonal) and CR (above
diagonal)

South Africa Angola NE Atlantic Mediterranean

South Africa 0.004/0.007 0.046 0.053 –

Angola 0.023 0.003/0.003 0.052 –

NE Atlantic 0.020 0.020 0.004/0.006 –

Mediterranean 0.032 0.029 0.029 0.005

Note: Diagonal values report the mean sequence divergence among haplotypes within clades with the first value for COI, and the second for

CR. Divergence calculated using K2P (Kimura, 1980). COI, cytochrome oxidase I; CR, control region.
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mindful of such considerations, the resolved phylogeographic struc-

ture clearly supports a prominent role for glacial vicariance in shaping

the divergence and regional association of the clades. The lack of

overlap detected, albeit only resolved at a macrogeographical scale in

this study, points to the role of some contemporary isolating mecha-

nisms which may include factors such as geographical distance, bio-

geographic barriers, adaptation, and life history.

The BUS has been identified as the prominent driver of diver-

gence across the SE Atlantic region, generating isolated populations

as well as endemic lineages and species in South African waters

(Gwilliam et al., 2018; Henriques et al., 2012, 2014; Reid et al., 2016;

Sala-Bozano et al., 2009; Schwaninger, 2008; Teske et al., 2011).

However, for some groups the BUS exhibits varying levels of historical

and/or recurrent permeability permitting bi-directional (Henriques

et al., 2015) or asymmetric (Healey et al., 2017) gene flow. Here the

mtDNA divergence of South African S. emarginatum from the geo-

graphically most close Angolan “S. cantharus” reveals no evidence of

such permeability and confirms the long-term isolation of these

groups. The S. emarginatum mtDNA also satisfies the reciprocal mono-

phyly criterion of the phylogenetic species concept. In addition, ratiosT
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TABLE 4 Summary of nuclear genetic variation for the Mossel
Bay, False Bay, Namibe and Benguela samples described using allele
number (Na), allelic richness (AR), expected (HE) and observed (HO)
heterozygosities and probability of conformance to the
Hardy–Weinberg equilibrium (PHWE)

Locus Indices MOB FAL NAM BEN

DsaMS27 Na 16 15 13 13

AR 13.523 12.165 10.082 10.282

HE 0.908 0.896 0.858 0.854

HO 0.952 0.8 0.643 0.64

PHWE 0.45 0.043 0.004 0.001

DsaMS34 Na 12 13 20 19

AR 10.918 10.737 14.998 15.27

HE 0.832 0.81 0.917 0.92

HO 0.389 0.524 0.692 0.76

PHWE <0.001 0.039 <0.001 0.017

DsaMS48 Na 9 14 11 11

AR 9 11.782 9.78 10.153

HE 0.814 0.884 0.88 0.861

HO 0.571 0.65 0.417 0.579

PHWE 0.005 0.001 <0.001 0.004

Dvul84 Na 10 13 8 4

AR 9.548 10.312 5.545 3.962

HE 0.836 0.818 0.57 0.529

HO 0.667 0.63 0.556 0.348

PHWE 0.245 0.004 0.049 0.01

Note. BEN, Benguela; FAL, False Bay; MOB, Mossel Bay; NAM, Namibe;

(Na), allele number; AR, allelic richness; HE, expected heterozygosity; HO

observed heterozygosity; PHWE, probability of conformance to the

Hardy–Weinberg equilibrium.
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of within/between clade sequence divergence exceed barcode gaps

for species delineation suggested for fish (Ward et al., 2009). In light

of criticisms of species delimitation based solely on mtDNA (reviewed

in Hudson & Coyne, 2002; Hudson & Turelli, 2003; Moritz &

Cicero, 2004; Sites & Marshall, 2004) confirmatory evidence from

other approaches is recommended (Funk & Omland, 2003; Gwilliam

et al., 2018). Nuclear FST were also significant in all comparisons

between the S. emarginatum and Angola samples (with no differentia-

tion within ether group), confirming restricted biparental gene flow

between the groups. STRUCTURE based clustering analyses also pro-

vided no evidence of hybrids or migrants between these groups. In

addition to historical and recurrent genetic isolation, morphological

differences between the larval stages of S. emarginatum and

S. cantharus are reported (Beckley & Buxton, 1989; Russell 1976). Fur-

thermore, while adults of both taxa are morphologically similar,

S. emarginatum appears to be smaller (maximum size 45 cm total

length (TL), average size 25 cm TL) than S. cantharus (maximum size

60 cm TL, average size 30 cm TL) (Bauchot & Smith 1984). Such size

differences against a background of general adult morphological simi-

larity were interpreted as evidence of ecological diversification across

the BUS in Atractoscion aequidens (Henriques et al., 2016). Collec-

tively, the data on Spondyliosoma support the genetic, ecological and

morphological differentiation of S. emarginatum from S. cantharus and

its recognition as a distinct species.

West African fishes have been less studied using genetic

approaches than their northern and southern (i.e., South African)

counterparts (Durand et al., 2013). However, studies have revealed

considerable phylogeographic diversity and genetic breaks within this

region, supporting a west African glacial refuge (Maggs et al., 2008)

with more recent studies specifying Angola as a candidate refugial

area (Reid et al., 2016). The broad phylogeographic structure would

be compatible with derivation of the Angolan clade from such an Afri-

can refuge while the NE Atlantic clade may have emanated from one

of the established NE Atlantic refuges (e.g., Iberia; Maggs et al., 2008).

The limited sampling restricts our information as to the ranges of the

Angolan and NE Atlantic clades in the waters north of the BUS. How-

ever, the data confirm that the cold water BUS represents a southern

boundary to the Angolan group. Though speculative at this point, the

similarly cold water Canary current may serve as a northern

boundary around Senegal (NW Africa), as observed in other groups

(Reid et al., 2016). If this is the case, the Angolan clade may represent

an isolated phylogeographic remnant.

The results of this study have a number of important systematic

implications. On the one hand, the data confirm the validity and

genetic integrity of S. emarginatum as a distinct species. On the other

hand, the study resolves similarly and even more highly divergent line-

ages among individuals all currently described as S. cantharus. The

question therefore arises as to whether S. cantharus comprises a cryp-

tic species complex wherein the various lineages represent

established/incipient species. The coarse grain sampling of this study

restricts fundamental inferences as to the respective ranges and

reproductive isolation among the lineages. In this context, it is inter-

esting that one of the sequences obtained from samples collected at

an Italian fish market (Armani et al., 2015) clustered with the NE

Atlantic clade. While the exact provenance of this specimen is

unknown it could point to secondary contact between NE Atlantic

and Mediterranean clades within the Mediterranean, the likes of

which have been reported for other taxa (Fruciano et al., 2011). Such

secondary contact may in some cases result in uninhibited gene flow

(Sala-Bozano et al., 2009). However, gene flow may also continue to

be restricted in sympatry, or beyond secondary contact/hybrid zones,

so that pre-existing genetic differences are preserved, at least in some

areas (Unckless & Orr, 2009). A robust multilocus (nuclear) assessment

combining morphological data and particularly detailing interactions

among lineages is needed to help determine the full diversity within

Spondyliosoma and the most adequate biological and taxonomic

status.
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