6 research outputs found

    Patterns without Patches: Hierarchical Self-Assembly of Complex Structures from Simple Building Blocks

    Get PDF
    Nanoparticles with “sticky patches” have long been proposed as building blocks for the self-assembly of complex structures. The synthetic realizability of such patchy particles, however, greatly lags behind predictions of patterns they could form. Using computer simulations, we show that structures of the same genre can be obtained from a solution of simple isotropic spheres, with control only over their sizes and a small number of binding affinities. In a first step, finite clusters of well-defined structure and composition emerge from natural dynamics with high yield. In effect a kind of patchy particle, these clusters can further assemble into a variety of complex superstructures, including filamentous networks, ordered sheets, and highly porous crystals

    Metastability in Pressure-Induced Structural Transformations of CdSe/ZnS Core/Shell Nanocrystals

    No full text
    The kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist. Here, we show with molecular dynamics computer simulation that in a model of CdSe/ZnS core/shell nanocrystals the core high-pressure structure can be made metastable under ambient conditions by tuning the thickness of the shell. In nanocrystals with thick shells, we furthermore observe a wurtzite to NiAs transformation, which does not occur in the pure bulk materials. These phenomena are linked to a fundamental change in the atomistic transformation mechanism from heterogeneous nucleation at the surface to homogeneous nucleation in the crystal core

    Metastability in Pressure-Induced Structural Transformations of CdSe/ZnS Core/Shell Nanocrystals

    No full text
    The kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist. Here, we show with molecular dynamics computer simulation that in a model of CdSe/ZnS core/shell nanocrystals the core high-pressure structure can be made metastable under ambient conditions by tuning the thickness of the shell. In nanocrystals with thick shells, we furthermore observe a wurtzite to NiAs transformation, which does not occur in the pure bulk materials. These phenomena are linked to a fundamental change in the atomistic transformation mechanism from heterogeneous nucleation at the surface to homogeneous nucleation in the crystal core

    Metastability in Pressure-Induced Structural Transformations of CdSe/ZnS Core/Shell Nanocrystals

    No full text
    The kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist. Here, we show with molecular dynamics computer simulation that in a model of CdSe/ZnS core/shell nanocrystals the core high-pressure structure can be made metastable under ambient conditions by tuning the thickness of the shell. In nanocrystals with thick shells, we furthermore observe a wurtzite to NiAs transformation, which does not occur in the pure bulk materials. These phenomena are linked to a fundamental change in the atomistic transformation mechanism from heterogeneous nucleation at the surface to homogeneous nucleation in the crystal core

    Self-Assembly of Quantum Dot–Gold Heterodimer Nanocrystals with Orientational Order

    No full text
    The self-assembly of nanocrystals into ordered superlattices is a powerful strategy for the production of functional nanomaterials. The assembly of well-ordered target structures, however, requires control over the building blocks’ size and shape as well as their interactions. While nanocrystals with homogeneous composition are now routinely synthesized with high precision and assembled into various ordered structures, high-quality multicomponent nanocrystals and their ordered assemblies are rarely reported. In this paper, we demonstrate the synthesis of quantum dot–gold (QD-Au) heterodimers. These heterodimers possess a uniform shape and narrow size distribution and are capped with oleylamine and do­decyl­tri­methyl­am­monium bromide (DTAB). Assembly of the heterodimers results in a superlattice with long-range orientational alignment of dimers. Using synchrotron-based X-ray measurements, we characterize the complex superstructure formed from the dimers. Molecular dynamics simulations of a coarse-grained model suggest that anisotropic interactions between the quantum dot and gold components of the dimer drive superlattice formation. The high degree of orientational order demonstrated in this work is a potential route to nanomaterials with useful optoelectronic properties

    Self-Assembly of Quantum Dot–Gold Heterodimer Nanocrystals with Orientational Order

    No full text
    The self-assembly of nanocrystals into ordered superlattices is a powerful strategy for the production of functional nanomaterials. The assembly of well-ordered target structures, however, requires control over the building blocks’ size and shape as well as their interactions. While nanocrystals with homogeneous composition are now routinely synthesized with high precision and assembled into various ordered structures, high-quality multicomponent nanocrystals and their ordered assemblies are rarely reported. In this paper, we demonstrate the synthesis of quantum dot–gold (QD-Au) heterodimers. These heterodimers possess a uniform shape and narrow size distribution and are capped with oleylamine and do­decyl­tri­methyl­am­monium bromide (DTAB). Assembly of the heterodimers results in a superlattice with long-range orientational alignment of dimers. Using synchrotron-based X-ray measurements, we characterize the complex superstructure formed from the dimers. Molecular dynamics simulations of a coarse-grained model suggest that anisotropic interactions between the quantum dot and gold components of the dimer drive superlattice formation. The high degree of orientational order demonstrated in this work is a potential route to nanomaterials with useful optoelectronic properties
    corecore