23 research outputs found

    Urinary tetrahydroaldosterone is associated with circulating FGF23 in kidney stone formers.

    Get PDF
    The spectrum of diseases with overactive renin-angiotensin-aldosterone system (RAS) or elevated circulating FGF23 overlaps, but the relationship between aldosterone and FGF23 remains unclarified. Here, we report that systemic RAS activation sensitively assessed by urinary tetrahydroaldosterone excretion is associated with circulating C-terminal FGF23. We performed a retrospective analysis in the Bern Kidney Stone Registry, a single-center observational cohort of kidney stone formers. Urinary excretion of the main aldosterone metabolite tetrahydroaldosterone was measured by gas chromatography-mass spectrometry. Plasma FGF23 concentrations were measured using a C-terminal assay. Regression models were calculated to assess the association of plasma FGF23 with 24 h urinary tetrahydroaldosterone excretion. We included 625 participants in the analysis. Mean age was 47 ± 14 years and 71% were male. Mean estimated GFR was 94 ml/min per 1.73 m2. In unadjusted analyses, we found a positive association between plasma FGF23 and 24 h urinary tetrahydroaldosterone excretion (β: 0.0027; p = 4.2 × 10-7). In multivariable regression models adjusting for age, sex, body mass index and GFR, this association remained robust (β: 0.0022; p = 2.1 × 10-5). Mineralotropic hormones, 24 h urinary sodium and potassium excretion as surrogates for sodium and potassium intake or antihypertensive drugs did not affect this association. Our data reveal a robust association of RAS activity with circulating FGF23 levels in kidney stone formers. These findings are in line with previous studies in rodents and suggest a physiological link between RAS system activation and FGF23 secretion

    Short-Term Fasting Attenuates Overall Steroid Hormone Biosynthesis in Healthy Young Women.

    Get PDF
    Context Fasting is stressful for the human body. It is managed by metabolic adaptations maintaining energy homeostasis and involves steroid hormone biosynthesis, but the exact interplay between energy and steroid metabolism remains elusive. Women with polycystic ovary syndrome (PCOS) suffer from disturbed metabolism and androgen excess, while in women with anorexia nervosa, cortisol and androgen production are decreased. By contrast, starvation of steroidogenic cells shifts adrenal steroid biosynthesis toward enhanced androgen production. Aim This study investigated the effect of fasting on steroid production in healthy women. Methods Twenty healthy young women fasted for 48 hours; steroid profiles from plasma and urine samples were assessed at baseline, after 24 hours, and 48 hours by liquid and gas chromatography-mass spectrometry. Results Fasting did not change overall steroidogenesis, although it increased progestogen production and lowered relative mineralocorticoid, glucocorticoid, and androgen production. The largest decrease in urine metabolites was seen for β-cortol, dehydroepiandrosterone, and androstenediol; higher levels were found for pregnanediol in urine and progesterone and aldosterone in serum. Activity of 17α-hydroxylase/17,20-lyase (CYP17A1), essential for androgen biosynthesis, was decreased after fasting in healthy women as were 21-hydroxylase (CYP21A2) and 5α-reductase activities. By contrast, hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1) activity for cortisol inactivation seemed to increase with fasting. Conclusion Significant changes in steroid metabolism occurred after 48 hours of fasting in healthy women. In contrast to metabolic changes seen at baseline in PCOS women compared to healthy women, and after starving of steroidogenic cells, no androgen excess was observed after short-term fasting in healthy young women

    Urinary steroid profiling in women hints at a diagnostic signature of the polycystic ovary syndrome: A pilot study considering neglected steroid metabolites.

    Get PDF
    Although the polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women with vast metabolic consequences, its etiology remains unknown and its diagnosis is still made by exclusion. This study aimed at characterizing a large number of urinary steroid hormone metabolites and enzyme activities in women with and without PCOS in order to test their value for diagnosing PCOS. Comparative steroid profiling of 24h urine collections using an established in-house gas-chromatography mass spectrometry method. Data were collected mostly prospectively. Patients were recruited in university hospitals in Switzerland. Participants were 41 women diagnosed with PCOS according to the current criteria of the Androgen Excess and PCOS Society Task Force and 66 healthy controls. Steroid profiles of women with PCOS were compared to healthy controls for absolute metabolite excretion and for substrate to product conversion ratios. The AUC for over 1.5 million combinations of metabolites was calculated in order to maximize the diagnostic accuracy in patients with PCOS. Sensitivity, specificity, PPV, and NPV were indicated for the best combinations containing 2, 3 or 4 steroid metabolites. The best single discriminating steroid was androstanediol. The best combination to diagnose PCOS contained four of the forty measured metabolites, namely androstanediol, estriol, cortisol and 20βDHcortisone with AUC 0.961 (95% CI 0.926 to 0.995), sensitivity 90.2% (95% CI 76.9 to 97.3), specificity 90.8% (95% CI 81.0 to 96.5), PPV 86.0% (95% CI 72.1 to 94.7), and NPV 93.7% (95% CI 84.5 to 98.2). PCOS shows a specific 24h urinary steroid profile, if neglected metabolites are included in the analysis and non-conventional data analysis applied. PCOS does not share a profile with hyperandrogenic forms of congenital adrenal hyperplasias due to single steroid enzyme deficiencies. Thus PCOS diagnosis by exclusion may no longer be warranted. Whether these findings also apply to spot urine and serum, remains to be tested as a next step towards routine clinical applicability

    How high-resolution techniques enable reliable steroid identification and quantification

    Get PDF
    Due to possible matrix interferences and artefact generation during sample preparation, careful method validation is required for quantitative bioanalytical methods, especially for analytes that are only present in low concentrations. Using the identification and quantification of progesterone metabolite in the urine of newborns as an example, we show how modern high-resolution instruments can be used to verify analyte assignment and avoid pitfalls commonly encountered by the use of low-resolution instruments

    A comprehensive urinary steroid analysis strategy using two-dimensional gas chromatography - time of flight mass spectrometry.

    No full text
    Steroids are key players in a high variety of physiological processes and are typically analyzed for the diagnosis of hormonal disorders. Due to their chemical and structural similarity many of these metabolites cannot be separated by conventional techniques such as liquid chromatography. Herein, we present an analysis strategy based on two dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (TOF MS) which demonstrates superior separation power and enables comprehensive screening of steroids. We show absolute quantitation of 40 steroids in human urine over three orders of magnitude with limits of detection ≤50 nM and the tentative identification of additional 30 steroids based on accurate mass, isotopic pattern analysis and spectral similarity matching to known steroids. The method displays excellent inter- and intra-day stability, repeatability and recovery and was validated for clinical routine analysis. Additionally, we demonstrate the potential of the approach for untargeted analysis of urinary steroids in mouse and rat

    Urinary sex steroid and glucocorticoid hormones are associated with muscle mass and strength in healthy adults

    No full text
    Context Sex steroid hormones exhibit anabolic effects whereas a deficiency engenders sarcopenia. Moreover, supra-physiological levels of glucocorticoids promote skeletal muscle atrophy, while physiologic levels of glucocorticoids may improve muscle performance. Objective To study the relationship between both groups of steroid hormones at a physiological range with skeletal muscle mass and function in the general population. Design Cross-sectional analysis of the associations between urinary excreted androgens, estrogens, glucocorticoids and steroid hormone metabolite ratios with lean mass and handgrip strength in a population-based cohort. Setting Three centers in Switzerland including 1128 participants. Measures Urinary steroid hormone metabolite excretion by GC-MS, lean mass by bioimpedance analysis and isometric handgrip strength by dynamometry. Results For lean mass a strong positive association was found with 11β-OH-androsterone and with most glucocorticoids. Androsterone showed a positive association in middle-aged and older adults. Estriol showed a positive association only in men. For handgrip strength strong positive associations with androgens were found in middle-aged and older adults, whereas positive associations were found with cortisol metabolites in young to middle-aged adults. Conclusions Sex steroid and glucocorticoids are strongly positively associated with skeletal muscle mass and strength in the upper limbs. The associations with muscle strength appear to be independent of muscle mass. Steroid hormones exert age-specific anabolic effects on lean mass and handgrip strength: Deficits in physical performance of aged muscles may be attenuated by androgens, whereas glucocorticoids in a physiological range increase skeletal muscle mass at all ages, and muscle strength in particular in younger adults

    No extra-adrenal aldosterone production in various human cell lines.

    Get PDF
    Extra-adrenal de-novo aldosterone (Aldo) production has been described inconsistently. Systematic data based upon state-of-the-art technology including validated controls are sparse. We hypothesized that aldosterone synthase (CYP11B2) expression and de-novo Aldo production are absent in non-adrenal human cell lines, either immortalized cell lines or commercially available primary cell lines, including peripheral blood mononuclear cells (PBMCs) of individuals without and with primary hyperaldosteronism (PA). CYP11B2-transfected COS-7 and endogenous CYP11B2 expressing adrenal H295R cells served as positive controls. Various well-characterized, purchased, immortalized (BeWo, HEK293, HTR-8/SVneo, JEG-3) and primary (HAEC, HLEC, HRGEC, HRMC, HUAEC, HUVEC, PBMC) cell lines as well as self-isolated PBMCs from PA patients (n=5) were incubated with the steroid hormone substrates progesterone, deoxycorticosterone, corticosterone or 18-OH-corticosterone with and without Ang II for 24h to assess CYP11B2 enzymatic activity. CYP11B2 expression was analyzed by Real-time PCR and liquid chromatography-mass spectrometry (LC-MS) was used to quantify Aldo production. Pronounced CYP11B2 mRNA expression and Aldo production were observed in both positive controls, which followed an incremental time course. Neither substrates alone nor co-incubation with Ang II significantly stimulated CYP11B2 expression or Aldo production in various immortalized and primary cell lines and PBMCs of PA patients. These results strongly support the absence of a relevant de-novo extra-adrenal Aldo production in non-adrenal cells including, blood mononuclear cells irrespective of the absence or presence of autonomous adrenal Aldo production
    corecore