331 research outputs found

    Hydroxyl, water, ammonia, carbon monoxide and neutral carbon towards the Sgr A complex

    Full text link
    We observed OH, H2_2O, HN3_3, C18^{18}O, and CI_I towards the +50 km/s cloud (M-0.02-0.07), the CND and the +20 km/s (M-0.13-0.08) cloud in the Sgr A complex with the VLA, Odin and SEST. Strong OH absorption, H2_2O emission and absorption lines were seen at all three positions. Strong C18^{18}O emissions were seen towards the +50 and +20 km/s clouds. The CND is rich in H2_2O and OH, and these abundances are considerably higher than in the surrounding clouds, indicating that shocks, star formation and clump collisions prevail in those objects. A comparison with the literature reveals that it is likely that PDR chemistry including grain surface reactions, and perhaps also the influences of shocks has led to the observed abundances of the observed molecular species studied here. In the redward high-velocity line wings of both the +50 and +20 km/s clouds and the CND, the very high H2_2O abundances are suggested to be caused by the combined action of shock desorption from icy grain mantles and high-temperature, gas-phase shock chemistry. Only three of the molecules are briefly discussed here. For OH and H2_2O three of the nine observed positions are shown, while a map of the C18^{18}O emission is provided. An extensive paper was recently published with Open Access (Karlsson et al. 2013; http://www.aanda.org/articles/aa/pdf/2013/06/aa20471-12.pdf ).Comment: Proc. of a Conf. on IAU Symposium No.303: The Galactic Center: Feeding and Feedback in a Normal Galactic Nucleus 2013, Santa Fe, NM (USA

    Variable T-Tubule Density and Organization in Rat Atrial Cardiomyocytes

    Get PDF

    BIOLOGY, LIFE HISTORY AND CONSERVATION OF ELASMOBRANCHS WITH AN EMPHASIS ON WESTERN ATLANTIC SKATES

    Get PDF
    In this dissertation two approaches were used to increase the knowledge of elasmobranch population dynamics and life history: (1), the comparative approach and (2), the species-specific approach. In the comparative approach I constructed standardized three-stage matrix models for 55 species of sharks and rays. Using these models I (1) conducted elasticity analyses to determine how the vital rates of mortality (M) and fertility (f) influence elasmobranch population growth rate r, (2) estimated sensitivity of elasticity to perturbation in vital rates, and (3) examined the taxonomic distribution of model inputs and species vital rates, such as size at maturity (Lmat), and total length (Lmax). I found positive relationships between the elasticity of Lambda (population growth rate) to changes in juvenile and adult stages to longevity and age at maturity; however, the age at maturity and the elasticity of Lambda to changes in the adult stage relationship appeared to be invariant. Combining vital rates and elasticities, I found similar suites of life histories and demographics within taxonomic groups at various levels. Further I examined where (or if) elasmobranchs fall in the evolved triangular ordination of life history strategies proposed by Winemiller and Rose (1992). My results indicate that when plotted using only the teleost ordination, elasmobranchs appear to be periodic strategists, outside the limits of the teleost ordination. However, when elasmobranch data is included in the ordination they form the extreme range of equilibrium strategists and are grouped by order. In the species-specific approach, I found evidence for a strong latitudinal trend in maximum size (l sub infinity) and size at maturation (lmat) in little skate with individuals in northern regions reaching a larger size at maturity and maximum length and growing slower than little skate from more southern regions. No similar trend was found in winter skate. Little skate is smaller, reaches maturity at a younger age is faster growing and shorter lived then winter skate (Little skate: l sub infinity = 56.1 cm, k = 0.19/yr, Tmax = 12.5, Tmat = 7; Winter skate: l sub infinity = 122.1 cm, k = 0.07/yr, Tmax = 20.5, Tmat = 12.5). Winter skate has higher annual fecundity then little skate of 26-101 and 21-57 eggs per year respectively. Using estimated vital rates for winter skate and National Marine Fisheries Service's survey data an age-structured model was constructed for winter skate from 1963-1998. The model indicated that the western Atlantic population of winter skate was rebuilding in the 1980's following overfishing in the 1960's and 1970's

    Contrasting fishing effort reduction and habitat connectivity as management strategies to promote alewife (\u3cem\u3eAlosa pseudoharengus\u3c/em\u3e) recovery using an ecosystem model

    Get PDF
    Small pelagics, or forage fish, link lower and higher trophic levels in marine food webs. Recently, attention has been given to the management of forage fish, including anadromous river herring (Alewife Alosa pseudoharengus, blueback herring A. aestivalis) and American shad (A. sapidissima) due to their current depleted status and historically important ecological and economic roles. Little is known about the impact of changes in their biomass on marine food webs and what management practices will promote their recovery. Estimated historical riverine productivity was utilized to evaluate potential ecosystem impacts of the increasing river to ocean connectivity to resemble 19th-century conditions. The Ecopath with Ecosim modeling framework was used to simulate management strategies, focused on anadromous forage fish, by creating scenarios of fisheries reduction (mixed fishery effort reduction) and river to ocean habitat connectivity (75% of historical connectivity achieved). Sixty-year simulations covered the entire time series including a 36-year forecast period to evaluate the ecosystem impacts of management strategies. Results suggest nonlinear relationships and large changes in biomass flows from forage fish to upper trophic levels in the Gulf of Maine ecosystem. Increases in biomass were observed for pelagic sharks, demersal piscivores, and species of conservation concern such as pinnipeds and seabirds, although overall results were strongly influenced by indirect trophic effects. Promoting anadromous forage fish recovery through increased connectivity resulted in the redundancy of marine ecosystem niches that would increase resilience to climate, fisheries, and other perturbations. This study highlights the value of employing ecosystem models for testing management scenarios to contrast different approaches to recover anadromous forage fish towards its former ecological prominence

    Evolution of realized Eltonian niches across Rajidae species

    Get PDF
    The notion that closely related species resemble each other in ecological niche space (i.e., phylogenetic dependence) has been a long-standing, contentious paradigm in evolutionary biology, the incidence of which is important for predicting the ecosystem-level effects of species loss. Despite being examined across a multitude of terrestrial taxa, many aspects of niche conservatism have yet to be explored in marine species, especially for characteristics related to resource use and trophic behavior (Eltonian niche characteristics, ENCs). We combined ENCs derived from stable isotope ratios at assemblage- and species-levels with phylogenetic comparative methods, to test the hypotheses that benthic marine fishes (1) exhibit similar assemblage-wide ENCs regardless of geographic location and (2) display phylogenetically dependent ENCs at the species level. We used a 12-species sub-set of the monophyletic group Rajidae sampled from three independent assemblages (Central California, Gulf of Alaska, and Northwest Atlantic), which span two ocean basins. Assemblage-level ENCs implied low trophic diversity and high evenness, suggesting that Rajidae assemblages may exhibit a well-defined trophic role, a trend consistent regardless of geographic location. At the species level, we found evidence for phylogenetic dependence of ENCs relating to trophic diversity (i.e., isotopic niche width; SEAc). Whether individuals can be considered functional equivalents across assemblages is hard to ascertain because we did not detect a significant phylogenetic signal for ENCs relating to trophic function (e.g., trophic position). Thus, additional, complimentary approaches are required to further examine the phylogenetic dependence of species functionality. Our approach illustrates the potential of stable isotope-derived niche characteristics to provide insight on macroecological processes occurring across evolutionary time, which could help predict how assemblages may respond to the effects of species loss

    Separation of realized ecological niche axes among sympatric tilefishes provides insight into potential drivers of co-occurrence in the NW Atlantic

    Get PDF
    Golden and Blueline Tilefish (Lopholatilus chamaeleonticeps and Caulolatilus microps) are keystone taxa in northwest (NW) Atlantic continental shelf-edge environments due to their biotic (trophic-mediated) and abiotic (ecosystem engineering) functional roles combined with high-value fisheries. Despite this importance, the ecological niche dynamics (i.e., those relating to trophic behavior and food-web interactions) of these sympatric species are poorly understood, knowledge of which may be consequential for maintaining both ecosystem function and fishery sustainability. We used stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) to build realized ecological niche hypervolumes to serve as proxies for diet and production use patterns of L. chamaeleonticeps and C. microps. We hypothesized that: (a) species exhibit ontogenetic shifts in diet and use of production sources; (b) species acquire energy from spatially distinct resource pools that reflect a sedentary life-history and differential use of the continental shelf-edge; and (c) species exhibit differentiation in one or more measured niche axes. We found evidence for ontogenetic shifts in diet (δ15N) but not production source (δ13C) in both species, suggesting a subtle expansion of measured ecological niche axes. Spatial interpolation of stable isotope ratios showed distinct latitudinal gradients; for example, individuals were 13C enriched in northern and 15N enriched in southern regions, supporting the assertion that tilefish species acquire energy from regional resource pools. High isotopic overlap was observed among species (≥82%); however, when hypervolumes included depth and region of capture, overlap among species substantially decreased to overlap estimates of 15%–77%. This suggests that spatial segregation could alleviate potential competition for resources among tilefish species inhabiting continental shelf-edge environments. Importantly, our results question the consensus interpretation of isotopic overlap estimates as representative of direct competition among species for shared resources or habitats, instead identifying habitat segregation as a possible mechanism for coexistence of tilefish species in the NW Atlantic

    Spatiotemporal Overlap Of Spiny Dogfish (Squalus Acanthias) And Commercial Fisheries In The Northeast Us Shelf Large Marine Ecosystem

    Get PDF
    Commercial fishermen have argued that localized concentrations of spiny dogfish (Squalus acanthias) in the northeast U.S. shelf large marine ecosystem (NES LME) have impeded their fishing operations when monitoring surveys estimated lower relative abundances. Fishery-dependent and -independent data were analyzed simultaneously to examine whether increased spatial overlap between spiny dogfish and commercial fisheries may explain high catches of this species on fishing grounds. Spatial overlap was quantified between spiny dogfish distribution and commercial fisheries from 1989 to 2009 during autumn and spring in the NES LME. Combined, the sink gillnet (SGN) and otter trawl (OT) fisheries accounted for the majority of spiny dogfish catch (autumn: 85%; spring: 92%), either retained (SGN) or discarded (OT). Centers of spiny dogfish abundance illustrated spatial differences in local density within the NES LME and revealed seasonal differences in spiny dogfish density. Recent increases in spatial overlap indicate that a growing portion of the spiny dogfish stock was available to each fishery over the time series. Availability, estimated as the percentage of spiny dogfish present on fishing grounds, also increased and was generally higher during autumn than spring. Abundance of mature (total length.80 cm) female spiny dogfish was significantly related to availability, but trends were variable between fisheries and seasons. Although recent increases in abundance indicate recovery, research regarding the mechanisms behind these changes may help explain why abundance in the NES LME appears highly variable

    Telemetry-validated nitrogen stable isotope clocks identify ocean-to-estuarine habitat shifts in mobile organisms

    Get PDF
    Throughout their life history, many animals transition among heterogeneous environments to facilitate behaviours such as reproduction, foraging and predator avoidance. The dynamic environmental and biological conditions experienced by mobile species are integrated in the chemical composition of their tissues, providing retrospective insight into movement. Here, we present a unique application of nitrogen stable isotope clocks (‘isotopic clocks’), which integrate tissue turnover rates, consumer stable isotope ratios and habitat-specific isotope baselines to predict time-since-immigration and the timing of habitat shifts in a migratory species. Nitrogen stable isotope values of blood plasma collected from juvenile sand tiger sharks Carcharias taurus, a species known to undertake seasonal movements between ocean and estuarine environments, were used to derive estimates of time-since-immigration and the timing of seasonal habitat shifts undertaken by this species. Nitrogen isotopic clocks estimated for 65 juvenile sand tiger sharks sampled across 6 years indicated that individual sharks predominantly arrived to estuarine habitats between June and July, with some individuals arriving as early as mid-May. These estimates were validated by comparing isotope-derived estuarine arrival times with those from acoustically tracked individuals. The median estuarine arrival day estimates from our isotopic approach aligned with estimates from acoustic telemetry for each sampling population. Sensitivity analyses indicated that isotopically inferred time-since-immigration and estuarine arrival estimates were robust to variation in isotopic turnover rate and diet tissue discrimination factors under multiple modelling scenarios. This suggests that parameterization of the nitrogen isotopic clock provides reliable estimates of time-since-immigration and day of arrival into new habitats if isotopic variation exists between origin and new locations. Our study presents a unique application of telemetry-validated isotope clocks to derive retrospective estimates of time-since-immigration and timing of habitat shifts for animals that seasonally traverse heterogeneous environments. This approach can be readily applied across many temporal and spatial scales, and to other species and ecosystems, to facilitate rapid assessment of changes in animal habitat use and broader ecosystem structure

    Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection

    Get PDF
    To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymu​​s. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use
    • …
    corecore