22 research outputs found
Schematic presentation of the knock-down system.
<p>(A) A gene fragment is inserted in between the left and right ITR as a trigger sequence. (B) Genes used for knock-down analysis are presented as mRNA with accession number and sequence length. Trigger sequences are indicated by black bars with position of the first and last nucleotide in respect to the ATG start. Oligonucleotides and their orientation used as hybridization probes are indicated by black arrows.</p
Model for gene silencing by natural and transgene derived siRNAs.
<p>(A) The endogenous DIRS–1 sequences are transcribed in both directions and generate dsRNAs (grey) which are cleaved by Dicer to ~21 nt siRNAs. siRNAs recruit RrpC in a AgnA-dependent manner. The resulting dsRNA which may be synthesised primer dependent or primer independent in 5’ and 3’ direction is processed to secondary siRNAs. Primer independent siRNAs carry a 5’-triphosphate. Argonaute proteins (probably AgnA) silence DIRS–1 by mRNA destabilisation [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131271#pone.0131271.ref010" target="_blank">10</a>]. (B) A transgene fusion of GFP and a DIRS-1 ORF is targeted by endogenous DIRS-1 siRNAs <i>in trans</i>. These may be primary or secondary siRNAs. They recruit the RdRP RrpC, which produces primer dependent and primer independent secondary siRNAs in 5’ and 3’ direction. Consequently, siRNAs matching adjacent sequences (here GFP) are generated. Silencing occurs on the level of mRNA destabilisation. DIRS–1 sequences are colour coded grey, GFP sequences green. Secondary siRNAs have a 5’-triphosphate or a monophosphate when they are Dicer products from longer dsRNAs or primer dependent. (C) siRNAs are generated from a bidirectionally transcribed trigger transgene. They can target the trigger transcripts <i>in cis</i> and complementary sequences on mRNAs of the corresponding endogene. They produce secondary siRNAs either from the trigger only or from both the target and the trigger transcript. If transgene derived siRNAs can only recruit RdRPs <i>in cis</i>, i.e. on the transgene itself, this could explain the lack of spreading along the mRNA of the endogene. Trigger sequences are colour coded grey, flanking sequences of the corresponding endogene blue.</p
Detection of siRNAs based on the bidirectional RNA expression driven by the left and right DIRS-1 ITRs.
<p>(A) Northern blot to detect alpha-Actinin (abpA), Coronin (corA) and Severin (sevA) siRNAs. Probes at the trigger-ends and near the trigger-centres are indicated and correspond to the probes shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131271#pone.0131271.g003" target="_blank">Fig 3</a> (see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131271#pone.0131271.s003" target="_blank">S1 Table</a>). (B) Northern blot to detect casein kinase (casK), cullin D (culD), queuine tRNA-ribosyl transferase 1 (qtrt1) siRNAs at the end of the trigger. A mixture of radiolabelled oligonucleotides (position indicated in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131271#pone.0131271.g003" target="_blank">Fig 3</a>, see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0131271#pone.0131271.s003" target="_blank">S1 Table</a>) was used for hybridization. All samples in A and B respectively were run on the same gel. Probes against snoRNA DdR-6 and DIRS–1 siRNAs were separately used as loading controls for A and B.</p
GFP RNA and protein levels from bidirectional promoter constructs.
<p>(A) Schematic presentation of the GFP reporter constructs. The GFP coding region was inserted between lITR and rITR of DIRS–1 and between opposing actin15 promoters (A15P). As a control, GFP with flanking A15P and A8 terminator (A8T) was used. (B) Analysis of GFP mRNA by Northern blots in the indicated strains. Blots were hybridized with probes against GFP sense mRNA (sense gfp, probe P29) and antisense mRNA (antisense gfp, probe P30). Equal loading was verified by rehybridization of the membrane with a <sup>32</sup>P labelled oligonucleotide directed against actin. Samples for A15P GFP A15P were run on a different gel and hybridized separately (see actin loading control). (C) Representative Northern blot of GFP and DIRS–1 siRNAs in the indicated strains. Equal loading was verified by rehybridization of membrane with a <sup>32</sup>P labelled probe directed against snoRNA DdR-6. (D) Representative Northern blot comparing GFP siRNAs generated from opposing ITRs and opposing A15 promoters. DdR-6 was used as a loading control. (E) Representative Western blot of GFP expression under the control of the left and right ITR in the indicated strains. GFP expression by A15P (¼ was loaded to avoid overexposure of the GFP signal) was used as a positive, the untransformed Ax2 as a negative control. CorA was used as a loading control. Quantification of the GFP intensity was performed using ImageJ. GFP expression by A15P was set to 1 (right panel). Ax2 lITR GFP rITR: n = 2. agnA- lITR GFP rITR: n = 4. Error bars: mean with SD. (F) Comparison of GFP silencing by opposing ITRs and A15Ps. GFP expression by A15P (¼ was loaded to avoid overexposure of the GFP signal) was used as a positive control.</p
Astronautica acta : offizielles Organ d. Internationalen Astronautischen Föderation
The degradation of long-lived proteins
in the body is an important
aspect of aging, and much of the breakdown is due to the intrinsic
instability of particular amino acids. In this study, peptides were
examined to discover if spontaneous nonenzymatic reactions could be
responsible for the composition of Alzheimer’s (AD) plaque
in the human brain. The great majority of AD plaque consists of N-terminally
truncated versions of AβÂ(1-40/1-42), with the most abundant
peptide commencing with Glu (residue 3 in Aβ1-40/1-42) that
is present as pyroGlu. Several Asp residues are racemized in Aβ
plaque, with residue 1 being predominantly l-isoAsp and peptide
bond cleavage next to Ser 8 is also evident. In peptides, loss of
the two N-terminal amino acids as a diketopiperazine was demonstrated
at pH 7. For the Aβ N-terminal hexapeptide, AspAlaGluPheArgHis,
this resulted in the removal of AspAla diketopiperazine and the generation
of Glu as the new N-terminal residue. The Glu cyclized readily to
pyroGlu. This pathway was altered significantly by zinc, which promoted
pyroGlu formation but decreased AspAla diketopiperazine release. Zinc
also facilitated cleavage on the N-terminal side of Ser 8. Racemization
of the original N-terminal Asp to l-isoAsp was also detected
and loss of one amino acid from the N-terminus. These data are therefore
entirely consistent with plaque in the human brain forming from deposition
of AβÂ(1-40/1-42) and, over time, decomposing spontaneously.
Since amyloid plaque is present in the human brain for years prior
to the onset of AD, gradual spontaneous changes to the polypeptides
within it will alter its properties and those of the oligomers that
can diffuse from it. Such incremental changes in composition may therefore
contribute to the origin of AD-associated cytotoxicity
Analysis of ITR promoter activity.
<p>(A) The GFP coding region was inserted between actin15 promoter (A15P) and actin8 terminator (A8T), DIRS–1 left ITR (lITR) and A8T, inverted DIRS-1 right ITR (rITR) and A8T. (B) Detection of GFP mRNA expression in Ax2 wild type driven by the constructs depicted in Fig 1A. As a loading control, the blot was rehybridised with a <sup>32</sup>P labelled oligonucleotide directed against actin (left panel). Western blot shows GFP protein expression in Ax2 wild type driven by the constructs depicted in Fig 1A. Coronin A (CorA) was used as a loading control (middle panel). The right panel shows the corresponding quantification of Western blots. Analysis was performed using ImageJ. Ax2 A15 GFP: n = 8. Ax2 lITR GFP: n = 4. Ax2 rITR GFP: n = 4. Error bars: mean with SD. (C) Detection of mRNA expression (left) and protein level (middle) for GFP driven by the lITR in Ax2 wild type and agnA knock-out (agnA-) cell lines. Numbers in square brackets indicate numbers of independent populations. The right panel shows the corresponding quantification of Western blots. Analysis was performed using ImageJ. Similar results were obtained with the right ITR (data not shown). Ax2 lITR GFP: n = 4. agnA- lITR GFP: n = 4. Error bars: mean with SD.</p
Determination of 5’ endgroups by Terminator 5'-phosphate-dependent exonuclease (5'exo).
<p>RNA samples of the ITR GFP strains (silencing <i>in cis</i>) and ITR abpA strains (silencing <i>in trans</i>) were digested with 5'exo, in buffer A and buffer B as indicated, separated on an acrylamide gel, blotted and probed with radiolabelled oligonucleotides complementary to 5.8S (digestion control), tRNA<sup>Asp</sup> (control for undigested RNA) and for GFP and abpA siRNAs respectively.</p
Additional file 1: of Isoaspartic acid is present at specific sites in myelin basic protein from multiple sclerosis patients: could this represent a trigger for disease onset?
Sites of Asp, Asn, Ser and Gln deamidation / racemisation. In addition to the sites of modification described, other sites of modification were detected in MBP. Some differences between MS patients and controls for Asp, Asn, Ser and Gln are summarised. (DOCX 1.84 mb
Comparison of published knock-out phenotypes with knock-downs by ITR constructs.
<p>(A) Nuclei count in Ax2 wild type cells and different knock-down strains. Knock-down of corA (lTR corA rITR) resulted in increased multinuclearity. 200 cells of each strain of two independent transformations were counted. (B) Knock-down of mhcA by an ITR construct showed huge cells containing up to 30 nuclei and more compared to Ax2 wild type and to a control knock-down of abpA. Scale bar 50μm. (C) Growth curve of Ax2 wild type cells and different knock-down strains. Knock-down of casK resulted in a slow growing culture. Measurement of cell density in the indicated cell lines over 72 hours. Data are plotted as relative cell count over time. Ax2, lITR GFP rITR, lITR abpA rITR: n = 2; lITR casK rITR: n = 4.</p
Subcellular localization of RbdB GFP and co-localization with DrnB.
<p>AX2 cells were transformed with the integrating plasmid pDneo2a RbdB GFP and subcellular localization was analyzed by fluorescence microscopy. A: Living cells were analyzed in low fluorescence axenic medium showing a diffuse distribution of the fusion proteins in the nucleoplasm and distinct foci at the periphery of the nuclei. Scale bar represents 5 μm. B: To better localize the subnuclear foci, cells were fixed with methanol and analyzed by an OptiGrid microscope (Leica DM 5500). Genomic DNA was stained by DAPI (red). The nucleoli showed no or only a very weak staining. Merging GFP (green) and DAPI (red) signals indicated that RbdB-GFP foci were enriched adjacent to areas with weak or no DAPI staining. Scale bar represents 2.5 μm. C: Co-localization of GFP DrnB and RbdB mRFP in nucleoli associated foci was monitored by fluorescence microscopy using methanol fixed cells. Shown is a single nucleus. Fusion proteins were expressed from extrachromosomally replicating plasmids. Scale bar represents 2.5 μm.</p