40 research outputs found

    L-DOPA-induced signaling pathways and neuroepigenetic mechanisms in experimental Parkinsonism and dyskinesia

    Get PDF
    In patients with Parkinson’s disease (PD), the restoration of depleted striatal dopamine by chronic administration of its precursor, L-DOPA, results in the emergence of debilitating involuntary movements. This complication, termed L-DOPA-induced dyskinesia (LID), represents a limitation to the most efficacious treatment for PD motor symptoms. LID progressively increases in severity despite the continual ability of L-DOPA to alleviate parkinsonian symptoms, suggesting divergent mechanisms of action and the potential for therapeutic intervention. Utilizing an experimental mouse model of PD, the work presented within this thesis investigates the molecular alterations underlying LID. These studies reveal that L-DOPA administration results in pathological intracellular signaling and gene expression within striatal medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R). Following L-DOPA administration, sensitized D1R signaling results in hyperactivity of the cyclic 3’-5’ adenosine monophosphate (cAMP)/ cAMP-dependent kinase (PKA)/ dopamine- and cAMP-regulated phosphoprotein of 32 kDA (DARPP-32) pathway. This exaggerated response results in excessive activation of the downstream extracellularregulated kinases 1 and 2 (ERK1/2) and mammalian target of rapamycin complex 1 (mTORC1) cascades, both of which are implicated in LID. These data also demonstrate that nuclear events mediated by mitogen- and stress-activated kinase 1 (MSK1), a direct ERK1/2 substrate, promote the induction of the transcription factor ΔFosB, which exacerbates LID. Furthermore, the concerted activity of MSK1 and DARPP-32 promotes histone H3K27me3S28p and the dissociation from transcription start sites of Rnf2, a Polycomb group protein that represses gene expression. These events are associated with an increase in transcription. Taken together, these studies support the idea that sensitized striatal D1R signaling promotes LID by excessive activation of intracellular signaling pathways and nuclear events promoting gene expression

    Deciphering the Actions of Antiparkinsonian and Antipsychotic Drugs on cAMP/DARPP-32 Signaling

    Get PDF
    The basal ganglia are affected by several neuropsychiatric and neurodegenerative diseases, many of which are treated with drugs acting on the dopamine system. For instance, the loss of dopaminergic input to the striatum, which is the main pathological feature of Parkinson’s disease, is counteracted by administering the dopamine precursor, L-DOPA. Furthermore, psychotic disorders, including schizophrenia, are treated with drugs that act as antagonists at the D2-type of dopamine receptor (D2R). The use of L-DOPA and typical antipsychotic drugs, such as haloperidol, is limited by the emergence of motor side-effects, particularly after prolonged use. Striatal medium spiny neurons (MSNs) represent an ideal tool to investigate the molecular changes implicated in these conditions. MSNs receive a large glutamatergic innervation from cortex, thalamus, and limbic structures, and are controlled by dopaminergic projections originating in the midbrain. There are two large populations of striatal MSNs, which differ based on their connectivity to the output nuclei of the basal ganglia and on their ability to express dopamine D1 receptors (D1Rs) or D2Rs. Administration of L-DOPA promotes cAMP signaling and activates the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) in the D1R-expressing MSNs, which form the striatonigral, or direct pathway. Conversely, haloperidol activates the cAMP/DARPP-32 cascade in D2R-expressing MSNs, which form the striatopallidal, or indirect pathway. This review describes the effects produced on downstream effector proteins by stimulation of cAMP/DARPP-32 signaling in these two groups of MSNs. Particular emphasis is given to the regulation of the GluR1 subunit of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptor, the extracellular signal-regulated protein kinases 1 and 2, focusing on functional role and potential pathological relevance

    Impaired Associative Fear Learning in Mice with Complete Loss or Haploinsufficiency of AMPA GluR1 Receptors

    Get PDF
    There is compelling evidence that l-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO) exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO) or partial loss (heterozygous mutant, HET) of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdala-mediated forms of learning and memory

    L-DOPA-Induced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission

    Get PDF
    Dyskinesia is a serious motor complication caused by prolonged administration of l-DOPA to patients affected by Parkinson’s disease. Accumulating evidence indicates that l-DOPA-induced dyskinesia (LID) is primarily caused by the development of sensitized dopamine D1 receptor (D1R) transmission in the medium spiny neurons (MSNs) of the striatum. This phenomenon, combined with chronic administration of l-DOPA, leads to persistent and intermittent hyper-activation of the cAMP signaling cascade. Activation of cAMP signaling results in increased activity of the cAMP-dependent protein kinase (PKA) and of the dopamine- and cAMP-dependent phosphoprotein of 32 kDa (DARPP-32), which regulate several downstream effector targets implicated in the control of the excitability of striatal MSNs. Dyskinesia is also accompanied by augmented activity of the extracellular signal-regulated kinases (ERK) and the mammalian target of rapamycin complex 1 (mTORC1), which are involved in the control of transcriptional and translational efficiency. Pharmacological or genetic interventions aimed at reducing abnormal signal transduction at the level of these various intracellular cascades have been shown to attenuate LID in different animal models. For instance, LID is reduced in mice deficient for DARPP-32, or following inhibition of PKA. Blockade of ERK obtained genetically or using specific inhibitors is also able to attenuate dyskinetic behavior in rodents and non-human primates. Finally, administration of rapamycin, a drug which blocks mTORC1, results in a strong reduction of LID. This review focuses on the abnormalities in signaling affecting the D1R-expressing MSNs and on their potential relevance for the design of novel anti-dyskinetic therapies

    Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF.

    Get PDF
    Stress affects various forms of cognition. We found that moderate stress enhanced late reversal learning in a mouse touchscreen-based choice task. Ventromedial prefrontal cortex (vmPFC) lesions mimicked the effect of stress, whereas orbitofrontal and dorsolateral striatal lesions impaired reversal. Stress facilitation of reversal was prevented by BDNF infusion into the vmPFC. These findings suggest a mechanism by which stress-induced vmPFC dysfunction disinhibits learning by alternate (for example, striatal) systems

    Reward-Related Behavioral Paradigms for Addiction Research in the Mouse: Performance of Common Inbred Strains

    Get PDF
    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touchscreen-based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food magazine head entries). Overall, these assays provide robust paradigms for future studies using the mouse to elucidate the neural, molecular and genetic factors underpinning reward-related behaviors relevant to addiction research

    Integrative structure and function of the yeast exocyst complex

    No full text
    Exocyst is an evolutionarily conserved hetero‐octameric tethering complex that plays a variety of roles in membrane trafficking, including exocytosis, endocytosis, autophagy, cell polarization, cytokinesis, pathogen invasion, and metastasis. Exocyst serves as a platform for interactions between the Rab, Rho, and Ral small GTPases, SNARE proteins, and Sec1/Munc18 regulators that coordinate spatial and temporal fidelity of membrane fusion. However, its mechanism is poorly described at the molecular level. Here, we determine the molecular architecture of the yeast exocyst complex by an integrative approach, based on a 3D density map from negative‐stain electron microscopy (EM) at ~16 Å resolution, 434 disuccinimidyl suberate and 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide hydrochloride cross‐links from chemical‐crosslinking mass spectrometry, and partial atomic models of the eight subunits. The integrative structure is validated by a previously determined cryo‐EM structure, cross‐links, and distances from in vivo fluorescence microscopy. Our subunit configuration is consistent with the cryo‐EM structure, except for Sec5. While not observed in the cryo‐EM map, the integrative model localizes the N‐terminal half of Sec3 near the Sec6 subunit. Limited proteolysis experiments suggest that the conformation of Exo70 is dynamic, which may have functional implications for SNARE and membrane interactions. This study illustrates how integrative modeling based on varied low‐resolution structural data can inform biologically relevant hypotheses, even in the absence of high‐resolution data
    corecore