251 research outputs found

    Decay of Ultralight Axion Condensates

    Full text link
    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion masses m∼10−22m\sim10^{-22} eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. We find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.Comment: 24 pages, 2 figures. v2: Added brief discussion of angular momentum; extended Appendix A; typos correcte

    Dynamics of circulation of the Japan Sea

    Get PDF
    Including mean flow forcing due to eddy-topography interaction in a numerical model of the Japan Sea appears to improve defects identified in previous modelling studies. Characteristic western boundary current overshoot (by the East Korea Warm Current) is reduced or eliminated while a southward undercurrent brings colder, fresher water along the Korean coast. Cyclonic circulation in the north includes a strengthened Liman Current. A more nearly continuous Nearshore Branch follows the Honshu shelf break with northward-flowing undercurrent. Interannual variability persists under fixed (seasonally repeating or annual mean) external forcing

    Vectors of Sense-Production: Deleuze, Hjelmslev, and Digital Ontogenesis

    Get PDF
    Two recent tendencies in digital-cultural theory have attempted to critique a representational view of computation through an attention to the language that itemizes computational processes. This paper argues that that each of the thinkers aligned with these two broad camps tend to reduce this language to one of two kinds of structure. The first approach sees the structures of computation and digitality as chiefly social; the second sees these structures as an extension of mathematical and philosophical logic. This paper proposes that the task of thinking outside this schema necessitates a methodological approach to computational elaborations of language not in terms of a logic of structure but a logic of sense. Through the work of Gilles Deleuze—by way of linguist Louis Hjelmslev—I introduce a notion of sense suitable for the analysis of the logico-mathematical statements that comprise digitality. I then read two examples from machine learning and computational linguistics research that provide occasion to consider aspects of digitality traditionally elided by the dominant usages of computers in the natural and social sciences. Finally, I conclude with some proposals regarding how we might conceive of the ontogeny of a digital object from this perspective

    Conexões matriciais: Perceptron enquanto diagrama

    Get PDF

    Evidence of Climate-Induced Range Contractions in Bull Trout \u3ci\u3eSalvelinus confluentus\u3c/i\u3e in a Rocky Mountain Watersehd, U.S.A.

    Get PDF
    Many freshwater fish species are considered vulnerable to stream temperature warming associated with climate change because they are ectothermic, yet there are surprisingly few studies documenting changes in distributions. Streams and rivers in the U.S. Rocky Mountains have been warming for several decades. At the same time these systems have been experiencing an increase in the severity and frequency of wildfires, which often results in habitat changes including increased water temperatures. We resampled 74 sites across a Rocky Mountain watershed 17 to 20 years after initial samples to determine whether there were trends in bull trout occurrence associated with temperature, wildfire, or other habitat variables. We found that site abandonment probabilities (0.36) were significantly higher than colonization probabilities (0.13), which indicated a reduction in the number of occupied sites. Site abandonment probabilities were greater at low elevations with warm temperatures. Other covariates, such as the presence of wildfire, nonnative brook trout, proximity to areas with many adults, and various stream habitat descriptors, were not associated with changes in probability of occupancy. Higher abandonment probabilities at low elevation for bull trout provide initial evidence validating the predictions made by bioclimatic models that bull trout populations will retreat to higher, cooler thermal refuges as water temperatures increase. The geographic breadth of these declines across the region is unknown but the approach of revisiting historical sites using an occupancy framework provides a useful template for additional assessments

    Prospectus, April 3, 2008

    Get PDF
    https://spark.parkland.edu/prospectus_2008/1008/thumbnail.jp

    Prospectus, November 1, 2007

    Get PDF
    https://spark.parkland.edu/prospectus_2007/1028/thumbnail.jp

    Fire and Fish Dynamics in a Changing Climate: Broad- and Local-Scale Effects of Fire-Induced Water Temperature Changes on Native and Nonnative Fish Communities

    Get PDF
    Fire is a key natural disturbance that affects the distribution and abundance of native fishes in the Rocky Mountain West. In the absence of migratory individuals from undisturbed portions of a watershed, persistence of native fish populations depends on the conditions of the post-fire stream environment. Stream temperatures typically warm after fire, and remain elevated until riparian vegetation recovers. An additional threat to native species is that nonnative fishes have invaded many waters, and these species tolerate or prefer warmer water temperatures. Thus, forecasting the long-term effects of fire on native fish populations requires an understanding of fire dynamics (size, distribution, frequency, and severity), the extent and location of changes in riparian forest structure and time to recovery, changes in stream temperatures associated with these forest changes, and how native and nonnative fish respond to changes in water temperature. To perform spatially explicit simulation modeling that examined the relations among fire disturbance, stream temperature, and fish communities, we upgraded and then linked the fire-forest succession model FireBGCv2 to a stream temperature model to project changes in water temperature in the East Fork Bitterroot River basin in Montana under an array of climate and fire management scenarios. Model projections indicated that although climate led to increases in fire severity, frequency, or size, water temperature increases at the basin scale were primarily a consequence of climate-driven atmospheric warming rather than changes in fire regime. Consequently, variation in fire management—fuel treatment or fire suppression—had little effect at this scale, but assumed greater importance at the scale of riparian stands. By revisiting a large number of previously sampled sites in the East Fork Bitterroot River basin in Montana, we evaluated whether bull trout persistence and other native and nonnative fish distributions were related to temperature changes associated with fire and recent climatic trends. Although fires were related to marked increases in summer water temperatures, these changes had a positive effect (westslope cutthroat trout) or a negligible effect (bull trout) on the abundance and distribution of native fish species, whereas the abundance of nonnative brook trout markedly declined in some instances. Fire-related changes in factors other than the thermal regime may have contributed to these patterns. In contrast, at the scale of the entire basin we observed an upward-directed contraction in the distribution of bull trout that was unrelated to fire. We concluded that this may be a response to temperature increases related to climate change

    Fire and Fish Dynamics in a Changing Climate: Broad- and Local-Scale Effects of Fire-Induced Water Temperature Changes on Native and Nonnative Fish Communities

    Get PDF
    Fire is a key natural disturbance that affects the distribution and abundance of native fishes in the Rocky Mountain West. In the absence of migratory individuals from undisturbed portions of a watershed, persistence of native fish populations depends on the conditions of the post-fire stream environment. Stream temperatures typically warm after fire, and remain elevated until riparian vegetation recovers. An additional threat to native species is that nonnative fishes have invaded many waters, and these species tolerate or prefer warmer water temperatures. Thus, forecasting the long-term effects of fire on native fish populations requires an understanding of fire dynamics (size, distribution, frequency, and severity), the extent and location of changes in riparian forest structure and time to recovery, changes in stream temperatures associated with these forest changes, and how native and nonnative fish respond to changes in water temperature. To perform spatially explicit simulation modeling that examined the relations among fire disturbance, stream temperature, and fish communities, we upgraded and then linked the fire-forest succession model FireBGCv2 to a stream temperature model to project changes in water temperature in the East Fork Bitterroot River basin in Montana under an array of climate and fire management scenarios. Model projections indicated that although climate led to increases in fire severity, frequency, or size, water temperature increases at the basin scale were primarily a consequence of climate-driven atmospheric warming rather than changes in fire regime. Consequently, variation in fire management—fuel treatment or fire suppression—had little effect at this scale, but assumed greater importance at the scale of riparian stands. By revisiting a large number of previously sampled sites in the East Fork Bitterroot River basin in Montana, we evaluated whether bull trout persistence and other native and nonnative fish distributions were related to temperature changes associated with fire and recent climatic trends. Although fires were related to marked increases in summer water temperatures, these changes had a positive effect (westslope cutthroat trout) or a negligible effect (bull trout) on the abundance and distribution of native fish species, whereas the abundance of nonnative brook trout markedly declined in some instances. Fire-related changes in factors other than the thermal regime may have contributed to these patterns. In contrast, at the scale of the entire basin we observed an upward-directed contraction in the distribution of bull trout that was unrelated to fire. We concluded that this may be a response to temperature increases related to climate change

    Rheology of enzyme liquefied corn stover slurries: The effect of solids concentration on yielding and flow behavior

    Get PDF
    The measurement of yield stress and shear thinning flow behavior of slurries formed from unpretreated corn stover at solids loadings of 100–300 g/L provides a key metric for the ability to move, pump, and mix this lignocellulosic slurry, particularly since corn stover slurries represent a major potential feedstock for biorefineries. This study compared static yield stress values and flow hysteresis of corn stover slurries of 100, 150, 200, 250, and 300 g/L, after these slurries were formed by adding pellets to a cellulase enzyme solution (Celluclast 1.5 L) in a fed-batch manner. A rotational rheometer was used to quantitate relative yield stress and its dependence on processing history at insoluble solids concentrations of 4%–21% (wt/vol). Key findings confirmed previous observations that yield stress increases with solids loadings and reaches ~3000 Pa at 25% (wt/vol) solids concentration compared to ~200 Pa after enzyme liquefaction. While optimization of slurry forming (i.e., liquefaction) conditions remains to be done, metrics for quantifying liquefaction extent are needed. The method for obtaining comparative metrics is demonstrated here and shows that the yield stress, shear thinning and shear thickening flow behaviors of enzyme liquefied corn stover slurries can be analyzed using a wide-gap rheometry setup with relative measuring geometries to mimic the conditions that may exist in a mixing vessel of a bioreactor while applying controlled and precise levels of strain
    • …
    corecore