221 research outputs found

    Schematic models for dynamic yielding of sheared colloidal glasses

    Full text link
    The nonlinear rheological properties of dense suspensions are discussed within simplified models, suggested by a recent first principles approach to the model of Brownian particles in a constant-velocity-gradient solvent flow. Shear thinning of colloidal fluids and dynamical yielding of colloidal glasses arise from a competition between a slowing down of structural relaxation, because of particle interactions, and enhanced decorrelation of fluctuations, caused by the shear advection of density fluctuations. A mode coupling approach is developed to explore the shear-induced suppression of particle caging and the resulting speed-up of the structural relaxation.Comment: 33 pages, 10 figures; accepted for publication in Faraday Disc. 123 (2002); small numerical correction

    Aging in attraction-driven colloidal glasses

    Full text link
    Aging in an attraction-driven colloidal glass is studied by computer simulations. The system is equilibrated without attraction and instantaneously ``quenched'', at constant colloid volume fraction, to one of two states beyond the glass transition; one is close to the transition, and the other one deep in the glass. The evolution of structural properties shows that bonds form in the system, increasing the local density, creating density deficits (holes) elsewhere. This process slows down with the time elapsed since the quench. As a consequence of bond formation, there is a slowing down of the dynamics, as measured by the mean squared displacement and the density, bond, and environment correlation functions. The density correlations can be time-rescaled to collapse their long time (structural) decay. The time scale for structural relaxation shows for both quenches a super-linear dependence on waiting time; it grows faster than the bond lifetime, showing the collective origin of the transition. At long waiting times and high attraction strength, we observe {\rem completely} arrested dynamics for more than three decades in time, although individual bonds are not permanent on this time scale. The localization length decreases as the state moves deeper in the glass; the non-ergodicity parameter oscillates in phase with the structure factor. Our main results are obtained for systems with a barrier in the pair potential that inhibits phase separation. However, when this barrier is removed for the case of a deep quench, we find changes in the static structure but almost none in the dynamics. Hence our results for the aging behavior remain relevant to experiments in which the glass transition competes with phase separation.Comment: 12 pages, 15 figure

    Moment free energies for polydisperse systems

    Full text link
    A polydisperse system contains particles with at least one attribute σ\sigma (such as particle size in colloids or chain length in polymers) which takes values in a continuous range. It therefore has an infinite number of conserved densities, described by a density {\em distribution} ρ(σ)\rho(\sigma). The free energy depends on all details of ρ(σ)\rho(\sigma), making the analysis of phase equilibria in such systems intractable. However, in many (especially mean-field) models the {\em excess} free energy only depends on a finite number of (generalized) moments of ρ(σ)\rho(\sigma); we call these models truncatable. We show, for these models, how to derive approximate expressions for the {\em total} free energy which only depend on such moment densities. Our treatment unifies and explores in detail two recent separate proposals by the authors for the construction of such moment free energies. We show that even though the moment free energy only depends on a finite number of density variables, it gives the same spinodals and critical points as the original free energy and also correctly locates the onset of phase coexistence. Results from the moment free energy for the coexistence of two or more phases occupying comparable volumes are only approximate, but can be refined arbitrarily by retaining additional moment densities. Applications to Flory-Huggins theory for length-polydisperse homopolymers, and for chemically polydisperse copolymers, show that the moment free energy approach is computationally robust and gives new geometrical insights into the thermodynamics of polydispersity.Comment: RevTeX, 43 pages including figure

    Mode Coupling and Dynamical Heterogeneity in Colloidal Gelation: A Simulation Study

    Full text link
    We present simulation results addressing the dynamics of a colloidal system with attractive interactions close to gelation. Our interaction also has a soft, long range repulsive barrier which suppresses liquid-gas type phase separation at long wavelengths. The new results presented here lend further weight to an intriguing picture emerging from our previous simulation work on the same system. Whereas mode coupling theory (MCT) offers quantitatively good results for the decay of correlators, closer inspection of the dynamics reveals a bimodal population of fast and slow particles with a very long exchange timescale. This population split represents a particular form of dynamic heterogeneity (DH). Although DH is usually associated with activated hopping and/or facilitated dynamics in glasses, the form of DH observed here may be more collective in character and associated with static (i.e., structural) heterogeneity.Comment: 12 pages, 12 figure

    Age-dependent transient shear banding in soft glasses

    Full text link
    We study numerically the formation of long-lived transient shear bands during shear startup within two models of soft glasses (a simple fluidity model and an adapted `soft glassy rheology' model). The degree and duration of banding depends strongly on the applied shear rate, and on sample age before shearing. In both models the ultimate steady flow state is homogeneous at all shear rates, consistent with the underlying constitutive curve being monotonic. However, particularly in the SGR case, the transient bands can be extremely long lived. The banding instability is neither `purely viscous' nor `purely elastic' in origin, but is closely associated with stress overshoot in startup flow.Comment: 4 pages, 3 figure

    Field-Induced Breakup of Emulsion Droplets Stabilized by Colloidal Particles

    Full text link
    We simulate the response of a particle-stabilized emulsion droplet in an external force field, such as gravity, acting equally on all NN particles. We show that the field strength required for breakup (at fixed initial area fraction) decreases markedly with droplet size, because the forces act cumulatively, not individually, to detach the interfacial particles. The breakup mode involves the collective destabilization of a solidified particle raft occupying the lower part of the droplet, leading to a critical force per particle that scales approximately as N1/2N^{-1/2}.Comment: 4 pages, plus 3 pages of supplementary materia

    Absorbing-State Transitions in Granular Materials Close to Jamming.

    Get PDF
    We consider a model for driven particulate matter in which absorbing states can be reached both by particle isolation and by particle caging. The model predicts a nonequilibrium phase diagram in which analogs of hydrodynamic and elastic reversibility emerge at low and high volume fractions respectively, partially separated by a diffusive, nonabsorbing region. We thus find a single phase boundary that spans the onset of chaos in sheared suspensions to the onset of yielding in jammed packings. This boundary has the properties of a nonequilibrium second order phase transition, leading us to write a Manna-like mean field description that captures the model predictions. Dependent on contact details, jamming marks either a direct transition between the two absorbing states, or occurs within the diffusive region.ERC, Royal Society, Pembroke Colleg

    Autonomous engines driven by active matter: Energetics and design principles

    Full text link
    Because of its nonequilibrium character, active matter in a steady state can drive engines that autonomously deliver work against a constant mechanical force or torque. As a generic model for such an engine, we consider systems that contain one or several active components and a single passive one that is asymmetric in its geometrical shape or its interactions. Generally, one expects that such an asymmetry leads to a persistent, directed current in the passive component, which can be used for the extraction of work. We validate this expectation for a minimal model consisting of an active and a passive particle on a one-dimensional lattice. It leads us to identify thermodynamically consistent measures for the efficiency of the conversion of isotropic activity to directed work. For systems with continuous degrees of freedom, work cannot be extracted using a one-dimensional geometry under quite general conditions. In contrast, we put forward two-dimensional shapes of a movable passive obstacle that are best suited for the extraction of work, which we compare with analytical results for an idealised work-extraction mechanism. For a setting with many noninteracting active particles, we use a mean-field approach to calculate the power and the efficiency, which we validate by simulations. Surprisingly, this approach reveals that the interaction with the passive obstacle can mediate cooperativity between otherwise noninteracting active particles, which enhances the extracted power per active particle significantly.Comment: 21 pages, 8 figure
    corecore