2,040 research outputs found
The missing lens in family firm governance theory: a self-other typology of parental altruism
In this paper, the authors derive a typology of five parental altruistic archetypes that exhausts the possible altruistic influences in the governance at family firms. They argue that when taken in concert, these five types comprise a more balanced explanation of the cross-sectional variance in the governance efficiency of these firms and therefore can better explain why some family firms are more able than others to capitalize on the family governance's positive attributes.family firms; parental altruism; governance
Identifying Arkansas Food Desert Blocks Suitable for a Peer-to-Peer Modeled Food Redistribution Program
Abstract
Nearly 10% of Americans reside in low-income urban food deserts which are low-income areas that lack access to affordable and nutritious foods. Food deserts in Arkansas contribute to a food insecurity rate above the national average, making it one of the most food insecure states in the country. Increased internet usage and consumer interest in sharing based companies contribute to the idea of a sharing, or peer-to-peer (P2P) style food redistribution program. The objective of this study is to identify which of the 186,211census blocks in the state of Arkansas are food deserts and best suited for and in the most need, based on an identified set of criteria, of a P2P food redistribution program. A multi-criteria decision analysis was conducted using population, internet access, vulnerable communities, and vehicle availability as criteria. Results suggest that based upon the close proximity of priority areas, transportation access, ethnic/racial diversity, and the number of possible collection locations, Pulaski County be targeted for a P2P food redistribution pilot program
Mechanically Compliant Grating Reflectors for Optomechanics
We demonstrate micromechanical reflectors with a reflectivity as large as
99.4% and a mechanical quality factor Q as large as 7.8*10^5 for optomechanical
applications. The reflectors are silicon nitride membranes patterned with
sub-wavelength grating structures, obviating the need for the many dielectric
layers used in conventional mirrors. We have employed the reflectors in the
construction of a Fabry-Perot cavity with a finesse as high as F=1200, and used
the optical response to probe the mechanical properties of the membrane. By
driving the cavity with light detuned to the high-frequency side of a cavity
resonance, we create an optical antidamping force that causes the reflector to
self-oscillate at 211 kHz
Riesz pyramids for fast phase-based video magnification
We present a new compact image pyramid representation, the Riesz pyramid, that can be used for real-time phase-based motion magnification. Our new representation is less overcomplete than even the smallest two orientation, octave-bandwidth complex steerable pyramid, and can be implemented using compact, efficient linear filters in the spatial domain. Motion-magnified videos produced with this new representation are of comparable quality to those produced with the complex steerable pyramid. When used with phase-based video magnification, the Riesz pyramid phase-shifts image features along only their dominant orientation rather than every orientation like the complex steerable pyramid.Quanta Computer (Firm)Shell ResearchNational Science Foundation (U.S.) (CGV-1111415)Microsoft Research (PhD Fellowship)Massachusetts Institute of Technology. Department of MathematicsNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374
Discovering the roots: Uniform closure results for algebraic classes under factoring
Newton iteration (NI) is an almost 350 years old recursive formula that
approximates a simple root of a polynomial quite rapidly. We generalize it to a
matrix recurrence (allRootsNI) that approximates all the roots simultaneously.
In this form, the process yields a better circuit complexity in the case when
the number of roots is small but the multiplicities are exponentially
large. Our method sets up a linear system in unknowns and iteratively
builds the roots as formal power series. For an algebraic circuit
of size we prove that each factor has size at most a
polynomial in: and the degree of the squarefree part of . Consequently,
if is a -hard polynomial then any nonzero multiple
is equally hard for arbitrary positive 's, assuming
that is at most .
It is an old open question whether the class of poly()-sized formulas
(resp. algebraic branching programs) is closed under factoring. We show that
given a polynomial of degree and formula (resp. ABP) size
we can find a similar size formula (resp. ABP) factor in
randomized poly()-time. Consequently, if determinant requires
size formula, then the same can be said about any of its
nonzero multiples.
As part of our proofs, we identify a new property of multivariate polynomial
factorization. We show that under a random linear transformation ,
completely factors via power series roots. Moreover, the
factorization adapts well to circuit complexity analysis. This with allRootsNI
are the techniques that help us make progress towards the old open problems,
supplementing the large body of classical results and concepts in algebraic
circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \&
Burgisser, FOCS 2001).Comment: 33 Pages, No figure
Decoupled Sampling for Real-Time Graphics Pipelines
We propose decoupled sampling, an approach that decouples shading from visibility sampling in order to enable motion blur and depth-of-field at reduced cost. More generally, it enables extensions of modern real-time graphics pipelines that provide controllable shading rates to trade off quality for performance. It can be thought of as a generalization of GPU-style multisample antialiasing (MSAA) to support unpredictable shading rates, with arbitrary mappings from visibility to shading samples as introduced by motion blur, depth-of-field, and adaptive shading. It is inspired by the Reyes architecture in offline rendering, but targets real-time pipelines by driving shading from visibility samples as in GPUs, and removes the need for micropolygon dicing or rasterization. Decoupled Sampling works by defining a many-to-one hash from visibility to shading samples, and using a buffer to memoize shading samples and exploit reuse across visibility samples. We present extensions of two modern GPU pipelines to support decoupled sampling: a GPU-style sort-last fragment architecture, and a Larrabee-style sort-middle pipeline. We study the architectural implications and derive end-to-end performance estimates on real applications through an instrumented functional simulator. We demonstrate high-quality motion blur and depth-of-field, as well as variable and adaptive shading rates
Recommended from our members
Potential of Balloon Photogrammetry for Spatially Continuous Snow Depth Measurements
Decoupled Sampling for Graphics Pipelines
We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at reduced shading cost, as well as controllable or adaptive shading rates which trade off shading quality for performance. It can be thought of as a generalization of multisample antialiasing (MSAA) to support complex and dynamic mappings from visibility to shading samples, as introduced by motion and defocus blur and adaptive shading. It works by defining a many-to-one hash from visibility to shading samples, and using a buffer to memoize shading samples and exploit reuse across visibility samples. Decoupled sampling is inspired by the Reyes rendering architecture, but like traditional graphics pipelines, it shades fragments rather than micropolygon vertices, decoupling shading from the geometry sampling rate. Also unlike Reyes, decoupled sampling only shades fragments after precise computation of visibility, reducing overshading.
We present extensions of two modern graphics pipelines to support decoupled sampling: a GPU-style sort-last fragment architecture, and a Larrabee-style sort-middle pipeline. We study the architectural implications of decoupled sampling and blur, and derive end-to-end performance estimates on real applications through an instrumented functional simulator. We demonstrate high-quality motion and defocus blur, as well as variable and adaptive shading rates
A Microwave Radiance Assimilation Study for a Tundra Snowpack
Recent studies have begun exploring the assimilation of microwave radiances for the modeling and retrieval of snow properties. At a point scale, and for short durations (i week), radiance assimilation (RA) results are encouraging. However, in order to determine how practical RA might be for snow retrievals when applied over longer durations, larger spatial scales, and/or different snow types, we must expand the scope of the tests. In this paper we use coincident microwave radiance measurements and station data from a tundra site on the North Slope of Alaska. The field data are from the 3rd Radio-brightness Energy Balance Experiment (REBEX-3) carried out in 1994-95 by the University of Michigan. This dataset will provide a test of RA over months instead of one week, and for a very different type of snow than previous snow RA studies. We will address the following questions: flow well can a snowpack physical model (SM), forced with local weather, match measured conditions for a tundra snowpack?; How well can a microwave emission model, driven by the snowpack model, match measured microwave brightnesses for a tundra snowpack?; How well does RA increase or decrease the fidelity of estimates of snow depth and temperatures for a tundra snowpack
- …
