109 research outputs found

    Elucidating the Transcriptional Network Underlying Expression of a Neuronal Nicotinic Receptor Gene: A Dissertation

    Get PDF
    Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in a plethora of fundamental biological processes ranging from muscle contraction to the formation of memories. The studies described in this work focus on the transcriptional regulation of the CHRNB4 gene, which encodes the Ɵ4 subunit of neuronal nAChRs. We previously identified a regulatory sequence (5Ā“ā€“ CCACCCCT ā€“3Ā“), or ā€œCA boxā€, critical for CHRNB4 promoter activity in vitro. Here I report transcription factor interaction at the CA box along with an in vivo analysis of CA box transcriptional activity. My data indicate that Sp1, Sp3, Sox10 and c-Jun interact with the CHRNB4 CA box in the context of native chromatin. Using an in vivo transgenic approach in mice, I demonstrated that a 2.3-kb fragment of the CHRNB4 promoter region, containing the CA box, is capable of directing cell-type specific expression of a reporter gene to many of the brain regions that endogenously express the CHRNB4 gene. Site-directed mutagenesis was used to test the hypothesis that the CA box is critical for CHRNB4 promoter activity in vivo. Transgenic animals were generated in which LacZ expression is driven by a mutant form of the CA box. Reporter gene expression was not detected in any tissue or cell type at ED18.5. Similarly, I observed dramatically reduced reporter gene expression at PD30 when compared to wild type transgenic animals, indicating that the CA box is an important regulatory feature of the CHRNB4 promoter. ChIP analysis of brain tissue from mutant transgenic animals demonstrated that CA box mutation results in decreased interaction of the transcription factor Sp1 with the CHRNB4 promoter. I have also investigated transcription factor interaction at the CHRNB4 promoter CT box, (5Ā“ā€“ ACCCTCCCCTCCCCTGTAA ā€“3Ā“) and demonstrated that hnRNP K interacts with the CHRNB4 promoter in an olfactory bulb derived cell line. Surprisingly, siRNA experiments demonstrated that hnRNP K knockdown has no impact on CHRNA5, CHRNA3 or CHRNB4 gene expression. Interestingly, knockdown of the transcription factor PurĪ± results in significant decreases in CHRNA5, CHRNA3 and CHRNB4 mRNA levels. These data indicate that PurĪ± can act to enhance expression of the clustered CHRNA5, CHRNA3 and CHRNB4 genes. Together, these results contribute to a more thorough understanding of the transcriptional regulatory mechanisms underlying expression of the CHRNB4 as well as the CHRNA5 and CHRNA3 genes, critical components of cholinergic signal transduction pathways in the nervous system

    Accumbens Cholinergic Interneurons Mediate Cue-Induced Nicotine Seeking and Associated Glutamatergic Plasticity

    Get PDF
    Nicotine, the primary addictive substance in tobacco, is widely abused. Relapse to cues associated with nicotine results in increased glutamate release within nucleus accumbens core (NAcore), modifying synaptic plasticity of medium spiny neurons (MSNs), which contributes to reinstatement of nicotine seeking. However, the role of cholinergic interneurons (ChIs) within the NAcore in mediating these neurobehavioral processes is unknown. ChIs represent less than 1% of the accumbens neuronal population and are activated during drug seeking and reward-predicting events. Thus, we hypothesized that ChIs may play a significant role in mediating glutamatergic plasticity that underlies nicotine-seeking behavior. Using chemogenetics in transgenic rats expressing Cre under the control of the choline acetyltransferase (ChAT) promoter, ChIs were bidirectionally manipulated before cue-induced reinstatement. Following nicotine self-administration and extinction, ChIs were activated or inhibited before a cue reinstatement session. Following reinstatement, whole-cell electrophysiology from NAcore MSNs was used to assess changes in plasticity, measured via AMPA/NMDA (A/N) ratios. Chemogenetic inhibition of ChIs inhibited cued nicotine seeking and resulted in decreased A/N, relative to control animals, whereas activation of ChIs was unaltered, demonstrating that ChI inhibition may modulate plasticity underlying cue-induced nicotine seeking. These results demonstrate that ChI neurons play an important role in mediating cue-induced nicotine reinstatement and underlying synaptic plasticity within the NAcore

    Interactions of Neuroimmune Signaling and Glutamate Plasticity in Addiction

    Get PDF
    Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-ĪŗB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs

    miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family

    Get PDF
    Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3\u27-untranslated regions (3\u27 UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3\u27 UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3\u27 UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR beta2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family

    miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family

    Get PDF
    Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3\u27-untranslated regions (3\u27 UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3\u27 UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3\u27 UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR beta2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family

    Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement

    Get PDF
    Both pre-clinical and clinical studies indicate that N-acetylcysteine (NAC) may be useful in treating relapse to addictive drug use. Cocaine self-administration in rats reduces both cystine-glutamate exchange and glutamate transport via GLT-1 in the nucleus accumbens, and NAC treatment normalizes these two glial processes critical for maintaining glutamate homeostasis. However, it is not known if one or both of these actions by NAC is needed to inhibit relapse to cocaine seeking. To determine whether the restoration of GLT-1 and/or cystine-glutamate exchange is required for NAC to inhibit cue-induced reinstatement of cocaine seeking, we utilized the rat self-administration/extinction/reinstatement model of cocaine relapse. Rats were pre-treated in the nucleus accumbens with vivo-morpholino anti-sense oligomers targeting either GLT-1 or xCT (catalytic subunit of the cystine-glutamate exchanger) overlapping with daily NAC administration during extinction (100 mg/kg, i.p. for the last 5 days). Rats then underwent cue-induced reinstatement of active lever pressing in the absence of NAC, to determine if preventing NAC-induced restoration of one or the other protein was sufficient to block the capacity of chronic NAC to inhibit reinstatement. The vivo-morpholino suppression of xCT reduced cystine-glutamate exchange but did not affect NAC-induced reduction of reinstated cocaine seeking. In contrast, suppressing NAC-induced restoration of GLT-1 not only prevented NAC from inhibiting reinstatement, but augmented the capacity of cues to reinstate cocaine seeking. We hypothesized that the increased reinstatement after inhibiting NAC induction of GLT-1 resulted from increased extracellular glutamate, and show that augmented reinstatement is prevented by blocking mGluR5. Restoring GLT-1, not cystine-glutamate exchange, is a key mechanism whereby daily NAC reduces cue-induced cocaine reinstatement

    Miocene Fossils Reveal Ancient Roots for New Zealandā€™s Endemic Mystacina (Chiroptera) and Its Rainforest Habitat

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19ā€“16 Ma) St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina

    Beyond the Hype: A Real-World Evaluation of the Impact and Cost of Machine Learning-Based Malware Detection

    Full text link
    There is a lack of scientific testing of commercially available malware detectors, especially those that boast accurate classification of never-before-seen (i.e., zero-day) files using machine learning (ML). The result is that the efficacy and gaps among the available approaches are opaque, inhibiting end users from making informed network security decisions and researchers from targeting gaps in current detectors. In this paper, we present a scientific evaluation of four market-leading malware detection tools to assist an organization with two primary questions: (Q1) To what extent do ML-based tools accurately classify never-before-seen files without sacrificing detection ability on known files? (Q2) Is it worth purchasing a network-level malware detector to complement host-based detection? We tested each tool against 3,536 total files (2,554 or 72% malicious, 982 or 28% benign) including over 400 zero-day malware, and tested with a variety of file types and protocols for delivery. We present statistical results on detection time and accuracy, consider complementary analysis (using multiple tools together), and provide two novel applications of a recent cost-benefit evaluation procedure by Iannaconne & Bridges that incorporates all the above metrics into a single quantifiable cost. While the ML-based tools are more effective at detecting zero-day files and executables, the signature-based tool may still be an overall better option. Both network-based tools provide substantial (simulated) savings when paired with either host tool, yet both show poor detection rates on protocols other than HTTP or SMTP. Our results show that all four tools have near-perfect precision but alarmingly low recall, especially on file types other than executables and office files -- 37% of malware tested, including all polyglot files, were undetected.Comment: Includes Actionable Takeaways for SOC

    Benchmarking High-Field Few-Electron Correlation and QED Contributions in Hgā·āµāŗ to Hgā·āøāŗ Ions. I. Experiment

    Get PDF
    The photorecombination of highly charged few-electron mercury ions Hg75+ to Hg78+ has been explored with the Heidelberg electron beam ion trap. By monitoring the emitted x rays (65-76 keV) and scanning the electron beam energy (45-54 keV) over the KLL dielectronic recombination (DR) region, the energies of state-selected DR resonances were determined to within Ā±4 eV (relative) and Ā±14 eV (absolute). At this level of experimental accuracy, it becomes possible to make a detailed comparison to various theoretical approaches and methods, all of which include quantum electrodynamic (QED) effects and finite nuclear size contributions (for a 1s electron, these effects can be as large as 160 and 50 eV, respectively). In He-like Hg78+, a good agreement between the experimental results and the calculations has been found. However, for the capture into Li-, Be-, and B-like ions, significant discrepancies have been observed for specific levels. The discrepancies suggest the need for further theoretical and experimental studies with other heavy ions along these isoelectronic sequences

    Cocaine Self-Administration and Extinction Leads to Reduced Glial Fibrillary Acidic Protein Expression and Morphometric Features of Astrocytes in the Nucleus Accumbens Core

    Get PDF
    As a more detailed picture of nervous system function emerges, diversity of astrocyte function becomes more widely appreciated. While it has been shown that cocaine experience impairs astroglial glutamate uptake and release in the nucleus accumbens (NAc), few studies have explored effects of self-administration on the structure and physiology of astrocytes. We investigated the effects of extinction from daily cocaine self-administration on astrocyte characteristics including GFAP expression, surface area, volume, and colocalization with a synaptic marker
    • ā€¦
    corecore