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REVIEW Open Access

Interactions of neuroimmune signaling and
glutamate plasticity in addiction
Cassandra D. Gipson1*, Scott Rawls2, Michael D. Scofield3,4, Benjamin M. Siemsen3, Emma O. Bondy1 and
Erin E. Maher1

Abstract

Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions
regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further,
chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the
glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this
review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system
following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this
review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in
addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important
neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance
of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then,
we describe the importance of studying non-neuronal cells with unprecedented precision because understanding
structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here
we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we
argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the
synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an
important and understudied role in addiction processes and may be critical in developing more efficacious
pharmacotherapies to treat SUDs.

Keywords: Neuroimmune, Glutamate, Microglia, Astroglia, Addiction

Introduction
Mechanisms of neuroimmune signaling have been linked
to stress [49, 171, 318], as well as neurodegenerative
(e.g., Alzheimer’s disease [52, 215]) and neuropsychiatric
disorders (e.g., depression [133]; nicotine and alcohol
use disorder [46, 70, 228, 246, 258, 259]). Studies have
shown that inflammation can significantly alter moti-
vated behavior in the short term which can be adaptive
(e.g., sickness [74]), but can also be maladaptive, such as

in major depressive disorder where reductions in activity
[331] and responses to rewards [85] are associated with
elevated immune signals such as tumor necrosis factor
alpha (TNFα). Much less is known in the substance use
disorder (SUD) field regarding peripheral or central im-
mune contributions to maladaptive drug use, though re-
cent studies show that drugs of abuse interact with
neuroimmune processes. These interactions may drive
the pathological motivation to seek drugs, and thus, neu-
roimmunomodulation of drug-motivated behavior is a
novel and exciting frontier with the potential to reshape
our current understanding of the neurobiological mech-
anisms underlying drug addiction vulnerability.
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Given that the role of neuroimmune signaling in ad-
diction is a relatively new area of research, little is
known regarding specific mechanisms that drive drug
use. Within the field of addiction, it has long been estab-
lished that dysregulated drug use is associated with a
transition from goal-directed to habitual drug-seeking
motivation [88, 194], and this is a cardinal characteristic
of SUD. Further, although drugs of abuse have different
direct mechanisms of action, there are conserved neuro-
biological changes across drug classes that likely interact
with neuroimmune processes following both chronic
and subchronic exposure. The purpose of this review is
to bring into focus the role of neuroimmune signaling in
driving drug addiction motivation, and based on what
we do know regarding interactions of neuroimmune
mechanisms and chronic drug use, we outline potentially
critical interactions with known drug-induced changes
in the glutamate system. Here, we will begin by outlining
potentially important neuroimmune processes with re-
gard to SUD and how they (1) interact with glutamate
signaling and (2) influence motivated drug-seeking be-
havior. Notably, the immune system is comprised of
both central and peripheral immune systems, thus we
will briefly describe the contributions of these to physi-
ology, and how that may contribute to neuroimmune
functions. Importantly, we will describe the well-
characterized role of glutamate homeostasis in drug
addiction and bring into focus how neuroimmune pro-
cesses may interact with this system to influence drug-
motivated behavior. Given the importance of tailoring
drug discovery efforts with sex specificity as well as the
recent mandate by the National Institutes of Health to
include both sexes [303], we will also describe sexual di-
morphisms in neuroimmune signaling and their poten-
tial effects on the corticolimbic reward circuit. The goal
of this section is to highlight the dearth of knowledge re-
garding how ovarian hormones may interact with neu-
roimmune signaling and glutamate homeostasis in
substance use disorders (SUDs) in a sex-specific fashion
(as noted in another recent review; see [108]). Next, we
will focus on microglia-astroglia communication and de-
tail the current state of the field with regard to available
techniques to study neuroimmune signaling. This sec-
tion highlights new technology that allows for more in-
tricate connections to be made between structure and
function of astroglia and microglia. Finally, to bring this
review into context with current pharmacotherapies
under examination to treat SUDs, we will describe small
molecule drug therapies that restore glutamate homeo-
stasis and may also exert anti-inflammatory effects to
curb drug-seeking behavior. Taken together, the goal of
this review is to demonstrate how neuroimmune and
glutamatergic signaling may interact within the reward
pathway to drive drug use vulnerability.

Striking a balance: neuroimmune signaling
The innate immune network within the central nervous
system (CNS) is critical to reducing neuronal damage in
response to environmental neuroimmune insults, but
the immune network itself can also lead to destructive
effects. Glial cells, including microglia and astroglia, as
well as other cell types, provide support and nutrients to
neurons. Further, these cells protect the CNS from in-
jury by upregulation of neuroimmune processes [18].
However, glial overactivation can lead to severe neuronal
damage which can further exacerbate neuroinflamma-
tion and neurodegeneration. It is not just glial overacti-
vation that can damage the nervous system; many
neurotransmitters and signaling molecules are toxic at
high levels (e.g., excitotoxicity induced by excessive glutam-
ate levels [179]). This toxicity itself has been proposed as a
potential mechanism for reducing colonization by microbes
that might otherwise hijack the brain [76]. But, as with
many defensive measures, excessive levels of molecules
such as neurotransmitters come with costs—in this case to
the host, as these excessive levels can compromise normal
brain and immune function. There must be a balance be-
tween neuroprotection and neurotoxicity [68, 134].
Neuroinflammation within the CNS occurs in re-

sponse to injury by immunocompetent cells which also
communicate with the peripheral immune system. For
example, immune cells from the periphery can infiltrate
the CNS in response to injury [167] or stress. One preclin-
ical example of this is a study which found that bone
marrow-derived microglia infiltrate the hippocampus of
mice following chronic foot-shock stress [45]. Interest-
ingly, in this study, these monocytes developed microglia-
like characteristics, including ramification morphology
and were Iba-1-positive but glial fibrillary acidic protein
(GFAP)-negative. Another study found infiltration of bone
marrow-derived monocytes in the paraventricular nucleus
of the hypothalamus following a stress paradigm in mice
[11], demonstrating peripheral cell recruitment is an im-
portant mechanism in response to a stressor [210].
Neuroimmune signals including cytokines and neuro-

trophic factors are also not exclusive to the central or
peripheral immune systems as there is a large amount of
overlap between the two [134]. Neurotrophic factors are
a family of proteins which play a critical role in normal
CNS development within vertebrate animals. These
factors regulate neuronal survival as well as growth of
dendritic arbors and plasticity [25, 193]. Further, neuro-
trophic factors, such as brain-derived neurotrophic fac-
tor (BDNF) and glial cell line-derived neurotrophic
factor (GDNF), play important roles in synaptic plasticity
and immune cell functions including migration, activa-
tion, and differentiation [134, 311].
Cytokines can serve protective or destructive roles

during neuroinflammation. For example, interleukin-37
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(IL-37) has been found to inhibit innate inflammation
both in vitro and in vivo. Pharmacotherapeutic targeting
of IL-37 has been conducted for the treatment of mul-
tiple inflammatory diseases such as asthma, fibromyalgia,
and chronic inflammatory disease [15, 200, 211], but has
not yet been studied in the context of SUDs. Although
not known, it is hypothesized the mechanisms by which
IL-37 exerts its anti-inflammatory actions may be
through inhibition of the mammalian target of rapamy-
cin (mTOR [186]), or through inhibition of inflamma-
some activation [221]. The mTOR pathway has been
implicated in addiction processes, specifically with psy-
chostimulants [17, 320]. Conversely, pro-inflammatory
cytokines are pleiotropic, whereby a given cytokine can
trigger proliferation in one cell type but then can lead to
inhibition of growth in another cell type. Pro-
inflammatory cytokines are produced in response to tis-
sue injury or neurodegeneration within the CNS by
tissue-invading leukocytes. As well, glial cells contain
inflammasomes which are cytosolic multiprotein com-
plexes that activate pro-inflammatory caspases (mainly
caspase 1 [253]). Within the addiction field, metham-
phetamine exposure has been found to activate inflam-
masomes [335, 343]. Activation of these caspases leads
to release of pro-inflammatory cytokines and an inflam-
matory response. It should be noted that the contribu-
tion of some mediators to neuroinflammation can vary
depending on when they are administered during the
course of disease. Within the addiction field, there is evi-
dence for this phenomenon as fractalkine (also termed
CX3CL1) can serve as a neuronal off-signal to maintain
the anti-inflammatory state of microglia; however, there
is also evidence of it serving a pro-inflammatory role as
it has been to mediate nicotine withdrawal-induced
hyperalgesia in rats [80].

Central and peripheral immune interactions:
potential contributions to addiction neurobiology
As noted above, the immune system is comprised of
both central and peripheral mechanisms, which have
until more recently been studied in isolation. As such,
immunology has only recently recognized that the CNS
is not immunoprivileged, but rather has interactions
with the immune system [73]. Here we briefly discuss in-
teractions with and distinctions between central and per-
ipheral immune mechanisms.
One way in which central and peripheral immune

mechanisms interact is through neurotransmitters,
which interact with peripheral immune cells and regu-
late their function. For example, human T cells, which
are produced in bone marrow and are critical for eradi-
cation of infections and cancer, express both ionotropic
and metabotropic glutamate receptors. As such, glutam-
ate plays critical roles in tissue other than brain,

including heart, kidney, intestine, lungs, and ovaries,
among others [104, 131, 230]. In the next section, we
will delve into the critical role of glutamate in the brain
reward pathway to motivated drug seeking.
Other neurotransmitters typically studied within the

CNS also appear to interact with peripheral immune sys-
tems. For example, γ-aminobutyric acid (GABA), the
main neuroinhibitory transmitter in the brain, is also
present in peripheral tissues such as pituitary, ovaries,
placenta, among others [111]. Importantly, GABA
mRNA has been identified in human peripheral blood
mononuclear cells [3] and GABA itself has been de-
tected in peripheral blood monocyte-derived macro-
phages [296]. Functionally, GABA can activate or reduce
secretion of cytokines [312]. In addition to GABA, sero-
tonin has been shown to interact with peripheral im-
mune cells and plays a critical role in immune cell
recruitment [183], macrophages that express the sero-
tonin transporter (SERT [144]). Because neurotransmit-
ter systems typically studied within the CNS have long
been shown to play critical roles in peripheral immune
functions, and these same neurotransmitter systems have
been heavily implicated in addiction neurobiology [151,
172], there is biological plausibility for reciprocal rela-
tionships of central and peripheral immune mechanisms
in addiction.
Given the focus of this review on microglia as critical

mediators of motivated drug seeking in addiction
through interactions with the astroglia-neuron glutamate
synapse, it is important to highlight that these cells are
distinct from peripheral macrophages. Both microglia
and peripheral macrophages come from primitive mac-
rophages; however, microglia come from yolk sac pro-
genitors and migrate to the developing CNS before the
closure of the blood brain barrier (BBB; [106]). Microglia
do share some genes with other mononuclear micro-
phages; however, there are some transcripts that are
highly enriched in microglia such as CX3CR1, P2RY12,
SOCS3, GPR34, TMEM119, and SALL1 among others
(some of which are considered exclusively markers of
microglia; see [185]). Importantly, only those cells from
yolk sac origin fully attain microglial identity, making
them distinct from peripheral macrophages which can
express some microglial genes when settled in the brain
[28].

Toll-like receptors and their role in addiction
Emerging evidence indicates a close link between addic-
tion and dysregulation of central immune pathways,
which includes activation of microglia through specific
receptors. Immune signaling involves a number of recep-
tors within a large class of receptors termed “pattern
recognition receptors” (PRRs), which are categorized by
the ligands which bind to them, their cellular
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localization, and the outcomes, or consequences, follow-
ing their activation [145]. One class of pattern recogni-
tion receptors (PPRs) that has been implicated in the
neuropathology of addiction is toll-like receptors (TLRs
[87, 141, 235, 327, 341, 347];), and the first PPRs identi-
fied and have since been established as critical mediators
of innate immune signaling [162]. TLRs are expressed
on microglia, and upon activation, these receptors trig-
ger intracellular signaling cascades that induce immune
responses [181]. Importantly, stimulation of TLRs acti-
vates signaling pathways resulting in elevated inflamma-
tory cytokines, including interleukin-1, interleukin-6,
and interleukin-8 (IL-1, IL-6, and IL-8) [206]; these cyto-
kines are transcribed through TLR4-mediated activation
of the nuclear factor-kappa B (NF-κB) pathway. This is
important because pro-inflammatory neuroimmune sig-
naling within the brain regulates AMPA and GABA recep-
tor trafficking [293], which may indicate important links
between pro-inflammatory signaling induced by TLR acti-
vation, glutamate plasticity, and addiction.
As mentioned above, TLRs are highly expressed on

microglia [128, 244]. Further, TLRs have been heavily
implicated in addiction processes across drug classes.
For example, the alcohol field has identified neuroim-
mune signaling, and specifically TLRs, as a critical com-
ponent of alcohol use disorder [64–66]. One study
showed that binge ethanol exposure during adolescence
promotes alterations in synaptic plasticity, which was as-
sociated with alcohol preference, an effect that was not
observed in TLR4 knockout mice [219]. Another study
found that TLR4 activation may contribute to disruption
of BBB integrity following ethanol exposure via the
drinking in the dark paradigm [256]. Additionally, there
is evidence for the role for TLR4 in polysubstance use,
as alcohol and nicotine use vulnerability was shown to
be modulated by TLR4 in the ventral tegmental area
[22]. Other drugs of abuse, such as cocaine and opioids,
have been associated with TLR activation within the nu-
cleus accumbens (NA [140, 347]), another key node of
the reward pathway. One study showed that TLR3 inhib-
ition as well as deficiency reduces cocaine conditioned
place preference (CPP), locomotor activity, and cocaine
self-administration in mice. Further, TLR3 inhibition re-
versed cocaine-induced upregulation of key proteins in-
volved in activation of the NF-κB pathway, such as
phospho-NF-κB, p65, IκB kinase (IKK), and p-IκBα
[347].
As mentioned above, TLRs interact critically with the

NF-κB pathway in models of addiction. Studies have
shown involvement of TLR4 in addiction-related behav-
iors. Specifically, one study found that deficiency of
TLR4 via a knockout mouse model was associated with
decreases in long-term depression (mediated through N-
methyl-D-aspartic acid (NMDA) receptors within the

NAcore) as well as attenuated cocaine conditioned place
preference (CPP [159];). This same study also showed
that these receptors are expressed primarily on microglia
within the NAcore. This study is critical as it links TLRs
with glutamatergic plasticity mechanisms within the
NAcore, which have been shown to be critical neurobio-
logical alterations induced by chronic use of drugs of
abuse [269]. Another study found that cocaine CPP and
self-administration is disrupted by blocking cocaine-
induced changes in TLR4 activation [235]. This study
also showed that NAcore dopamine release is suppressed
through a TLR4-mediated mechanism. Together, these
results demonstrate that TLR signaling, and its activa-
tion of the NF-κB pathway, is critical in SUDs across
various classes of drugs of abuse. Below we will delve
further into connections between glutamatergic signal-
ing, TLRs and the NF-κB pathway, and addiction.

Developing an understanding of the interactions
between neuroimmune signaling and glutamate
in addiction
Decades of studies have provided a clear link between al-
tered plasticity at glutamatergic synapses in the NAcore
and relapse of drug seeking following exposure to several
drugs of abuse, including cocaine, heroin, methampheta-
mine, nicotine, and ethanol [109, 110, 117, 151, 177,
224, 277]. Astroglia are critical regulators of excitatory
transmission in the NAcore and do so via the homeo-
static regulation of extracellular glutamate levels. Astro-
glia maintain basal levels of glutamate in the NAcore via
glutamate release through the cystine-glutamate antipor-
ter (xCT), a glial system whereby extracellular cysteine is
exchanged for intracellular glutamate [21]. This release
provides a significant proportion of the overall basal glu-
tamate tone on presynaptic metabotropic glutamate re-
ceptors (e.g., mGluR2/3), limiting evoked glutamate
release. Decreased function of xCT ([20] a), and thus de-
creased levels of basal glutamate [29], in the NAcore is a
cornerstone of addiction biology and is directly linked to
dysfunctional glutamate homeostasis underlying relapse
vulnerability [151]. Astroglia clear synaptic glutamate via
activity of the glutamate transporter (GLT-1 [301]). The
largely conserved drug-induced decrease in GLT-1 re-
sults in an inability to clear evoked glutamate release
arising from cortical terminals when animals are under-
going cue- or drug prime-induced seeking for drugs
such as cocaine [205, 283] and heroin [177, 272]. Thus,
astrocytic dysfunction in regulating basal glutamate, as
well as clearance of synaptic glutamate, has been estab-
lished as a primary mechanism underlying addiction
pathology and cue-induced drug-seeking behavior [270].
As stated, glutamate is released from prelimbic cortical

afferents in the NAcore during drug-seeking behavior
([205, 283, 291]; also see increased glutamate in humans
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following 12 h of alcohol withdrawal, [48]). Glutamate
binds post-synaptically to α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and NMDA recep-
tors, and enters the extracellular space due to downregu-
lation of GLT-1. The net result is changes in post-
synaptic plasticity [110, 272]. The ability of cues to drive
drug seeking, at least for the case of cocaine, heroin, and
nicotine, has been attributed to a transient increase in
synaptic potentiation at glutamatergic synapses in the
NAcore [109]. Transient synaptic potentiation is charac-
terized by increased AMPA/NMDA ratios and elevated
dendritic spine head diameter in NAcore medium spiny
neurons (MSNs), which requires activation of matrix
metalloproteinases (MMPs) through S-nitrosylation
[281], and thus activation of NAcore nitrergic interneu-
rons [283] to release nitric oxide (NO [276]). From the
above findings, it can be concluded that glutamate over-
flow onto NAcore nitrergic interneurons, due to dys-
functional astroglia clearance, is likely a primary
mechanism whereby cues associated with drugs of abuse
can drive relapse through altered plasticity at NAcore
glutamatergic synapses on MSNs. Although the majority
of the NAcore signaling cascades leading to the induc-
tion of cued seeking have been well characterized, it is

unclear how GLT-1 and xCT are dysregulated by drug
exposure. We posit that disturbances in neuroimmune
signaling, specifically drug-induced alterations in micro-
glia and their communication with astroglia and neu-
rons, are important mediators of such adaptations (see
Fig. 1). Importantly, microglia-neuron-astroglia interac-
tions as we propose in this figure have not been well
characterized as a function of withdrawal timepoint, nor
have they been well defined across different drugs of
abuse. These are important future research directions.
As mentioned in the section above, several drugs of

abuse, but particularly opioids, have been shown to dir-
ectly activate microglia through TLR4 and/or mu (μ)
opioid receptors on resident microglia [199, 325],
whereby μ opioid receptor activation accentuates lipo-
polysaccharide (LPS)-induced microglia activation-
mediated NF-kB signaling [103, 141]. Importantly, LPS
is both a microbial product and can be exogenously in-
fused to induce sepsis, and subsequently, an immune re-
sponse. In addition to neurons and astroglia, microglia
also express a broad range of glutamate receptors, as
well as glutamate transporters [90, 227]. GLT-1 has been
shown to be positively regulated by the uptake of neu-
ronally derived exosomes enriched in microRNA (miR)-

Fig. 1 Hypothesized nucleus accumbens neuroimmune-glutamate interactions in addiction. Drugs of abuse (1) activate TLRs, which (2) triggers
the NF-κB signaling pathway within microglial cells through activation of P38, which is expressed in activated microglia. Microglia then release
pro-inflammatory cytokines such as TNFα and IL-1β. These cytokines then (3) bind to their receptors (TNFR, IL-1βR) on astroglia, which activates
NF-κB through JNK pathways. Specifically, binding of these cytokines leads to activation of the IKK, c-Jun N-terminal kinase (JNK), and p38 MAPK,
which leads to activation of the transcription factor NF-κB. This then leads to (4) repression of GLT-1 transcription and ultimately downregulation
of the GLT-1 transporter, as TNFα negatively regulates EAAT2 transcription. Downregulation of GLT-1 protein results in an inability of astroglia to
clear excess glutamate from the synapse during reinstated drug seeking (5). Following exposure to drug-associated cues, (6) glutamate release
from cortical afferents into the nucleus accumbens is potentiated, leading to (7) activation of ionotropic glutamate receptors (e.g., AMPA, NMDA),
rapid, transient post-synaptic plasticity, and relapse. In females, estrogen receptors (ERs) are located on various cell types including microglia and
astroglia, and can directly inhibit NF-κB. TLR = toll-like receptor; P38 = p38 mitogen-activated protein kinase (MAPK); NF-κB = nuclear factor-kappa
B; TNFα = tumor necrosis factor alpha; IL = interleukin; GLT-1 = glutamate transporter-1
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124, and a recent study found that the number of exo-
somes is reduced in both astroglia and microglia follow-
ing cocaine self-administration [209], suggesting that
cocaine experience alters the interplay between neurons
and glial cells which may be important for subsequent
relapse vulnerability. Importantly, miR-124 functions in
microglia to promote anti-inflammatory cytokine release,
and overexpression of miR-124 in the striatum sup-
presses cocaine-mediated microglia activation and
hyperactivity by preventing cocaine’s ability to upregu-
late TLR4 [248], further linking microglia activity to al-
tered behavioral patterns evoked by drug exposure. As
described above, one consequence of TLR4 activation is
elevated pro-inflammatory cytokine release, particularly
TNFα, which can have a profound influence on both
neurons and astroglia. Because reduced GLT-1 expres-
sion might depend on increased transcription of inflam-
matory factors due to upregulation of miRNAs, these
signaling pathways must be considered in neural-glial
communication and may impact glutamate homeostasis.
Microglia shape neuronal communication through

cytokine release and neuroimmune signaling, with dis-
ruptions of these processes described in several patho-
logical conditions [31, 89, 163]. Using a genetically
modified MgPTX mouse model to inhibit Gi in microglia,
one new study found that Gi-dependent microglia dy-
namics may block neuronal hyperexcitability, and this
may be important in disease [212]. In accordance with
the well-established role for bidirectional communica-
tion between microglia and neurons in the regulation of
neuronal structural and synaptic plasticity [36, 328, 333],
microglia-mediated TNFα release increases NR1 surface
expression and NMDA-mediated Ca2+ influx and evokes
excitatory post-synaptic currents in hippocampal neu-
rons [330]. Alternatively, TNFα has been shown to lead
to a rapid insertion of Ca2+-permeable AMPA receptors
in hippocampal pyramidal neurons [293]. This latter
point is particularly relevant because long access cocaine
self-administration followed by withdrawal increases Ca2
+ -permeable AMPA receptor accumulation in NAcore
MSNs which is directly linked to craving following ex-
tended withdrawal [61, 203]. Though a rise in TNFα
levels and a decrease in AMPA/NMDA ratio is observed
after chronic methamphetamine administration [216], it
was found TNFα-knockout mice administered more
methamphetamine than controls [190, 216, 336]. More-
over, cocaine-induced increases in TNFα in the NAcore
have been shown to be protective against cocaine loco-
motor sensitization and do so by decreasing AMPA/
NMDA ratios in D1 MSNs [184]. It is likely that differ-
ences in experimental design, including contingent ver-
sus non-contingent cocaine administration, differentially
alter the ability of cocaine to engage TNFα. Moreover,
the degree to which different drugs of abuse engage

microglia activation via TLR4 is likely an important fac-
tor in the differential pathology underlying psychostimu-
lants relative to opiate-based drugs of abuse.
In the healthy brain, TNFα release from microglia is

critical for regulating synaptic transmission in several
brain regions. However, this basal amount exists in the
100–200 pM range [261]. At these low concentrations,
TNFα is thought to be permissive for effective glio-
transmission (i.e., release of glutamate from astroglia).
However, at high concentrations (~ 100 nM), TNFα
leads to massive glutamate release from astroglia [238].
To put this in perspective, when TNFα concentrations
reach a plateau, TNFα is able to increase astroglia glu-
tamate release threefold higher than any recorded GPCR
agonist [34]. Thus, TNFα can act as a potent signaling
molecule linking microglia to astroglia, and ultimately
neurons. Accordingly, basal microglial release of TNFα
acts as a prerequisite for circuits to undergo synaptic
scaling, a phenomenon that can be described as an in-
crease or decrease in single-cell synaptic strength or ex-
citability in response to circuit-wide neuronal activity
[294]. Cultured NAcore MSNs undergo synaptic scaling
in their natural state, and the ability to do so is altered
by prolonged addition of dopamine [299]. Microglial
regulation of synaptic scaling is thought to be engaged
by altering astroglia-mediated activation of metabotropic
glutamate receptors [242], a cellular mechanism linked
to relapse vulnerability across several drugs of abuse in-
cluding cocaine, nicotine, and opioids, among others
[269, 270]. Thus, it is likely that a switch in the ability of
TNFα to either allow for normal synaptic function or
contribute to aberrant plasticity, or altered synaptic scal-
ing, is likely due to changes in the local concentration of
TNFα as a result of neuroimmune insult or chronic acti-
vation of microglia.
Apart from the well-described ability of TLR4 activa-

tion, and the subsequent release of TNFα, to engage al-
tered synaptic function, there is also a role for microglia
in releasing NO [63] and activating matrix metallopro-
teinase 9 (MMP9 [67]) through alternative pathways,
both of which occur upstream of synaptic glutamate
overflow in cue-induced cocaine seeking [281]. While
the source of MM9 is currently under debate [282],
some studies have shown that methamphetamine is as-
sociated with release of MMP9 and MMP2 through
endothelial cells (e.g., see [91, 92]). One other potential
source is resident microglia. In cultured microglia, acti-
vation of TLR2 increases microglial MMP9, which is
NO-dependent [16]. Although neuronal nitric oxide syn-
thase (nNOS) activation, caused by mGluR5 activation,
results in NO production necessary for cue-induced co-
caine seeking, fluctuations in microglial NO release
could contribute to the neuronal pool [276, 283]. This
would lead to additive effects in MMP9 S-nitrosylation,
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consequently altering MSN structural and functional
synaptic plasticity. Given that daily cocaine injections in-
crease TLR2 phosphorylation and TNFα in the striatum
[187], it is likely that the increase in MMP9 could be
due to activation of NAcore microglia through the TLR2
pathway during cue-induced seeking, although this has
yet to be shown experimentally.
There is a wealth of data indicating that brain regions

other than the striatum, particularly the prelimbic com-
ponent of the medial prefrontal cortex (mPFC), undergo
morphological and electrophysiological adaptations after
cocaine exposure. For example, 1 week of abstinence
from cocaine self-administration decreases the density of
dendritic spines in prelimbic neurons projecting to the
NAcore [275]. Moreover, compulsive drug seeking fol-
lowing extended cocaine self-administration, character-
ized by persistent cocaine seeking despite foot shocks,
decreases the intrinsic excitability of prelimbic output
neurons [56], which is paralleled by clinical studies re-
vealing decreased glucose metabolism in frontal cortical
regions of human cocaine abusers [113]. Induction of
neuroimmune signaling by acute LPS injections leads to
rapid microglia activation, but a delayed decrease in the
density of dendritic spines in vivo [169]. Using a mouse
model of myocardial infarction, increased TNFα signal-
ing has been linked to a loss of cortical dendritic spines
[208]. In the field of addiction, alongside the pervasive
increase in the expression of inflammatory signaling fac-
tors resulting from activation of the NF-kB pathway seen
across multiple drugs of abuse, dendritic spine loss has
also been observed following chronic ethanol, cocaine
and morphine exposure [114, 214, 290]. Microglia asso-
ciate with synapses, and dendritic spines, in an
experience-dependent manner whereby they can engulf
presynaptic connections at spines [328]. This is particu-
larly well-established as a fundamental mechanism of
circuit remodeling during development, but has also
been shown to persist into adulthood at select synapses
[115]. We posit that this learning-dependent modifica-
tion of neuronal networks may be one mechanism
whereby the loss of dendritic spines, and subsequent
hypofrontality observed following cocaine exposure, may
be due to aberrant activation of microglia in the adult
cortex and thus an inability to effectively regulate striatal
circuitry associated with motor activation in response to
drug-associated stimuli [152].

An emerging mechanism: NF-κB signaling and
addiction
As described in detail above, disruptions in glutamate
signaling have been well characterized following chronic
use of and relapse to drugs of abuse (for an in-depth re-
view of the topic, see [269]). Although glutamatergic
neuroadaptations have long been a focus of the

addiction field, the molecular mechanisms by which
drugs of abuse alter glutamatergic signaling remain in-
completely understood. There are known interactions
between TNFα and the NF-κB pathway with glutamate
synaptic communication, and the NF-κB pathway has
been extensively studied in the areas of stress and addic-
tion. Activation of this pathway appears to interact with
glutamate signaling in addiction models [228, 278, 280,
297], and as such, the NF-κB pathway may prove critical
in driving aberrant glutamate changes in addiction. Here
we present a case for the importance of the NF-κB path-
way and its activation by TNFα in driving dysregulated
glutamate signaling in addiction. Following discussion of
NF-κB-glutamate interactions and how this may be crit-
ical in driving addiction-related behavior, we next high-
light that there may be sex-specific differences in how
the NF-κB pathway is activated and involved in glutam-
ate homeostasis in addiction within the next section.
Neuroimmune signaling has been shown to interact

with neurotransmission and, specifically, has an import-
ant role in maintaining normal glutamatergic signaling
in order to prevent excitotoxicity [34, 122, 300]. Import-
antly, GLT-1 transports > 90% of glutamate out of the
synapse [126] and is downregulated by several drugs of
abuse including cocaine, alcohol, nicotine, and heroin
[110, 254, 255, 272]. Please note that when discussing
the protein below, the term used will be GLT-1; when
discussing the gene, the term used will be Excitatory
Amino Acid Transporter-2 or EAAT2. Next we will de-
scribe how TNFα controls EAAT2 gene transcription
and subsequent expression of GLT-1 protein, and how
this is relevant for dysregulation of glutamate homeosta-
sis in addiction.
Impaired glutamate uptake by glia can lead to cell

death due to overactivation of glutamate receptors [59];
this mechanism has been linked to Alzheimer’s disease
and amyotrophic lateral sclerosis among others [81].
The EAAT2 gene is induced by epidermal growth factor
and is downregulated by tumor necrosis factor α (TNFα)
through the NF-κB pathway. Specifically, p65 binding to
the -583 site of the EAAT2 promoter is increased fol-
lowing activation by TNFα. Further, EAAT2 expression
required NF-κB as determined by mutation of the -583
site in which mutation impaired constitutive activation
of EAAT2 [278]. Taken together, the results from this
previous work and Sitcheran’s comprehensive study indi-
cate that NF-κB is essential for basal activation of
EAAT2, and TNFα negatively regulates EAAT2. This is
important because it shows that TNFα and the NF-κB
pathway interact with known glutamate dysregulations
that are disrupted by addiction and relapse (e.g., see
[110, 254, 255, 272]).
As mentioned above, neuroinflammation due to drugs

of abuse appears to be mediated in large part by the NF-
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κB pathway [228, 259] and is highly conserved across
various species and cell types [105]. NF-κB signaling is
heavily involved in learning and memory processes [4,
153] and plays a role in dendritic spine morphological
changes in response to cocaine [7]. As mentioned above,
TNFα activates NF-κB signaling, and the NF-κB pathway
is involved in learning, memory, and synaptic plasticity
[4, 153, 207, 237, 293, 294]. Accordingly, TNFα signaling
and the NF-κB pathway may underlie drug-induced al-
terations in synaptic plasticity and drug-seeking behav-
ior. A recent study from our lab found an increase in
soluble TNFα expression within the nucleus accumbens
core (NAcore) during both nicotine withdrawal and after
15 min of cue-induced nicotine-seeking behavior. Fur-
ther, inhibition of NF-κB via viral gene transfer of a
dominant-negative form of IKK inhibited nicotine-
seeking behavior and reduced GLT-1 expression, illus-
trating a critical role of NF-κB in driving nicotine-
seeking behavior [228]. In the canonical signaling path-
way, NF-κB heterodimers are maintained in an inhibited
state within the cytoplasm through interactions with IκB
(e.g., IκBα). Through ligand binding of extracellular sig-
naling molecules (e.g., cytokines such as TNFα, IL-6,
etc.) to their cell-surface receptors, adaptor proteins are
recruited to the intracellular domain of the receptor, ac-
tivating an IKK complex that phosphorylates IκB. This
allows for the proteasomal degradation of IκB and trans-
location of NF-κB into the nucleus where it binds to
DNA, alters transcription of its gene target [105], leading
to secretion of the soluble homotrimer form of TNFα
[57, 189, 324]. Finally, studies have demonstrated that
the NF-κB pathway can lead to the activation of Rho
GTPases, a class of proteins involved in synaptic plasti-
city and neuron morphological changes when exposed
to psychoactive substances [78, 79].
NF-κB signaling occurs in multiple cell types including

neurons, astroglia, and microglia [42, 148, 154, 156, 182,
289]. Within neurons, both pre- and post-synaptic com-
ponents contain NF-κB signaling machinery [155]. NF-
κB signaling occurs in astroglia [154], and astroglial acti-
vation drives microglial proliferation [241]. Microglial
activation occurs in response to damage, and these cells
are responsive to aberrant neurotransmission. Given that
glutamate overflow occurs during drug-seeking behavior
with various drugs of abuse including nicotine, cocaine,
and heroin [110, 177, 283], there is biological feasibility
for the role of microglia in the driving drug-seeking be-
havior. In further support, microglia express glutamate
receptors, including AMPA [121, 234], NMDA [149],
kainate, and group I [37], II [307], and III [306] metabo-
tropic glutamate receptors (mGluRs; also see [119] for a
review). Activation of these receptors by glutamate ap-
pears to contribute to microglial motility, activation
state, and release of TNFα. Importantly, microglia also

express GLT-1, and glutamate uptake by microglia oc-
curs through this transporter [192, 227]. NF-κB signaling
within microglia likely plays a critical role in microglial
response to excessive glutamate release, which raises the
possibility that microglia orient to the synapse during
drug-seeking behavior in response to glutamate release
within the NA. Further, this circuit may be critical in fa-
cilitating astroglia morphological alterations in response
to drug seeking, as astroglia retract from the synapse
during cocaine withdrawal [271], and return to the syn-
apse during reinstatement of heroin seeking [175] fol-
lowing the same time course as a rapid increase in GLT-
1 protein during cued nicotine seeking (within 15 min of
reinstatement [228]).
There is evidence that drug self-administration leads

to constitutive increases in pro-inflammatory (M1) and/
or growth-promoting (M2) microglial expression; both
are increased after alcohol [246]. Though the use of M1
and M2 classifications of microglial activation has been
invalidated as demonstrated by these results (also see
section “Interactions between microglia and astroglia”
below for additional detail), the collective increase in
phagocytic ability of microglia after alcohol exposure
should be noted. Also exemplifying microglial-mediated
inflammatory responses in SUDs is the binding by opi-
oids and subsequent activation of myeloid differentiation
factor 2 (MD-2)-TLR4 complex on microglia, resulting
in increased expression of both anti- and pro-
inflammatory signaling molecules via the NF-κB pathway
[84]. It was further concluded that the degree of micro-
glial activation was a significant predictor of morphine
half-maximal antinociceptive dose (ED50) values, indicat-
ing a correlation between microglial inflammatory ex-
pression and opioid tolerance through NF-κB pathway
[84]. Notably, females exhibit greater microglial activa-
tion compared to males following morphine exposure.
Below, we will describe sexual dimorphisms in neuroim-
mune processes, which may contribute to sex differences
in SUD vulnerability.

Estrogen and the NF-κB pathway: a sex-specific role in
addiction processes?
The prior section laid a foundation upon which further
research should be conducted to fully characterize how
the NF-κB pathway may be critically involved in
addiction-related behavior. The goal of this section is to
lay the groundwork for future studies aimed at under-
standing how steroidal hormones interact with the NF-
κB pathway and glutamate signaling in addiction.
There is an important role of steroidal hormones in

mediating immune functions, including 17β-estradiol
(E2), its weaker estrogen metabolites such as estrone
(Schmidt et al., 2009), as well as the steroidal hormone
progesterone [217]. The metabolism of these steroidal
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hormones is complex, as cholesterol is the precursor for
pregnenolone which converts to progesterone, which
can then be converted to androstenedione, which is con-
verted to testosterone, and then E2. It is therefore plaus-
ible that different steroidal hormones as well as their
metabolites play key roles in neuroimmune processes in-
volved in addiction. As noted above, testosterone is con-
verted to E2 in both males and females [191]. Thus, it is
biologically feasible that steroidal hormones also interact
with neuroimmune signaling and glutamate homeostasis
in critical ways relevant to addiction in males. However,
to the notion that this may be sex-specific, one study
found that extracellular striatal dopamine not only varies
by estrous cycle phase in rats, but that gonadectomy in
females (via ovariectomy) but not males significantly de-
creased striatal dopamine levels compared to intact
counterparts [334]. Although this study focused on
dopamine release and not glutamate or neuroimmune
systems, these results indicate that the reward pathway
is likely differentially regulated by steroidal hormones in
males and females and supports further research on sex
differences in this area. Given the complex shifting ster-
oidal hormone milieu during reproductive cycling in fe-
males, as well as the metabolic relationships between
steroidal hormones, much research is needed to fully
characterize and understand how they interact with the
NF-κB pathway and glutamate signaling in addiction. It
is also important to note that males and females
undergo vastly different reproductive system transitions
during normal aging, whereby females undergo a pre-
cipitous loss of steroidal hormones during menopause,
and males undergo a slow decline in hormones, termed
andropause [24, 108]. As well, precipitous loss of E2 dur-
ing menopause may increase vulnerability to pro-
inflammatory signaling, which may be further exacer-
bated due to factors which have antiestrogenic proper-
ties such as smoking [225, 304]. Thus, aging processes
should also be assessed in a sex-specific fashion.
Due to the recent push by the National Institutes of

Health to incorporate both sexes into scientific research,
as well as the focus by the National Institute on Drug
Abuse to focus specifically on issues relevant to SUDs in
women, sex differences in neurobiology and reproductive
life cycle that could interact with drugs of abuse have be-
come more frequently investigated. As a result, important
findings have emerged in the study of aging and SUDs in
women, an area of research that has been largely ignored.
For example, the presence of menopausal symptoms is as-
sociated with decreased rates of smoking abstinence [62].
Below we describe how estrogens interact with neuroim-
mune processes, which may be important in mediating
motivated drug use in addiction.
Estrogens, primarily E2, bind to estrogen receptors

(ER)-α and ER-β. ER-α and ER-β are expressed in a

variety of cell types [204] and can directly regulate ex-
pression of numerous genes and alter transcription with-
out directly binding to DNA by associating with other
transcription factors [260]. Through these powerful
mechanisms, estrogens can greatly impact cellular func-
tion. Importantly, estrogen can be neuroprotective. Dur-
ing transitional menopause, a precipitous loss of
estrogen occurs and is associated with neurodegenera-
tive disorders as well as neuroinflammatory diseases and
vascular wall degeneration [220]. Thus, the loss of estro-
gen during menopause may lead to neuroinflammatory
processes that exacerbate disease, specifically in women.
Estrogens can interact with NF-κB directly (Fig. 1).

They primarily repress monocyte and macrophage func-
tions [124], and E2 specifically inhibits NF-κB signaling
through inhibition of IL-6 and TNFα [58, 136]. Further,
a significant amount of evidence suggests that estrogen
inhibits microglial activation [220, 322, 323]. ERs are
transcription factors that mediate responses to estrogen
and are essential for various biological processes includ-
ing cardiovascular, reproductive, and nervous systems
[150]. ERs can inhibit NF-κB activity via various mecha-
nisms including inhibition of IKK activity, inhibition of
the degradation of IκB, blocking binding of DNA by NF-
κB, binding coactivators and competing with NF-κB for
coactivator binding, or binding directly to DNA-bound
NF-κB to inhibit transcriptional activation induced by
NF-κB. Activation of ER-α inhibits NF-κB activity in an
estrogen-dependent manner, at nanomolar concentra-
tions of estrogen [292, 319]. Further, ER expression is
rapidly and transiently decreased following estradiol-
induced activation (termed “receptor recycling” [38,
160]). This rapid alteration in ER expression may impact
neuroimmune signaling through interactions with NF-
κB, leading to the possibility that induction of NF-κB ac-
tivation due to drug seeking may be decreased during
phases of the menstrual cycle in which E2 levels rise.
The anti-inflammatory effect of E2 is further supported
by the finding that E2-induced activation of G protein-
coupled receptor 30 (GPR30), an ER highly expressed in
the brain, inhibited the TLR4/NF-kB pathway, relieved
microglial activation, and reduced TNFα levels after is-
chemic injury [342], The presence of GPR30 in the stri-
atum [6] supports the need for further research of its
role in addiction processes.
Growing evidence suggests that the neuroprotective

effects of E2 on neuronal health occur through the abil-
ity of E2 to modulate synaptic glutamate levels [243].
Evidence shows that blood glutamate levels vary as a
function of menstrual cycle phase in women, where glu-
tamate levels decline as E2 and progesterone increase
[348]. Further, E2 increases GLT-1 expression in astro-
glia [180], which may be protective from the long-term
reductions in glutamate uptake induced by drugs of
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abuse. Together, these results indicate that glutamate
levels decrease in preparation for ovulation as a poten-
tially direct consequence of rising E2 levels. However, it
may be possible that the decrease in glutamate from ris-
ing E2 levels may exacerbate drug use vulnerability,
given that low constitutive glutamate levels occur follow-
ing withdrawal from drugs of abuse [20] and are associ-
ated with potentiated synapses within the NA [110].
Further research is needed to unravel the complex inter-
actions between hormones, neural circuitry, and addic-
tion in females.
In support of a critical role for the shifting ovarian

hormone milieu in regulating drug motivation, studies
have shown that drug self-administration varies as a
function of estrous cycle phase in rodents [196]. As well,
clinical studies have found that women are typically
more vulnerable to SUDs [138, 139], and women have
more difficulty maintaining long-term smoking cessation
than men [249, 250, 329]. Interestingly, menstrual cycle
phase in women can affect cigarette craving and relapse
following periods of abstinence [5, 54, 95], and this may
be due to the shifting ovarian hormone milieu. Specific-
ally, increases in E2 and progesterone are associated with
addiction vulnerability and resilience, respectively [8,
285–288]. Given that E2 can be neuroprotective, these
are counterintuitive results. Thus, additional research is
needed to understand how the changing ovarian hor-
mone milieu with menstrual cycle may differentially im-
pact drug-seeking motivation and glutamate plasticity in
addiction.

Interactions between microglia and astroglia
In the section “Developing an understanding of the inter-
actions between neuroimmune signaling and glutamate in
addiction”, we described ways in which microglia and
astroglia interact with glutamate signaling particularly in
the context of addiction. However, microglia and astroglia
communicate directly as well, which influences neuronal
function and survival. In this section, we will first describe
the important early functions of microglia and astroglia
and will then describe their interactions. Both microglia
and astroglia are critical in shaping the brain during early
life development, as microglia development and matur-
ation is synchronized with neurogenesis and are important
in synaptic pruning [265], and astroglia contribute to the
formation of neural circuits [55].
Astroglia form complex networks that are ubiquitously

found in all brain regions, spinal cord, and all neuronal
layers. They are connected by gap junctions and form
long processes with end feet that communicate with
blood vessels and also ensheathe synapses [201]. Astro-
glial networks are vast, and these cells organize commu-
nication pathways, structural architecture, and plasticity
of the brain [231]. In addition to glutamate uptake (see

section “Developing an understanding of the interactions
between neuroimmune signaling and glutamate in addic-
tion” above), astroglia are also critical in transferring glu-
tamate back to neurons, supply energy substrates to
neurons, store glucose, regulate pH in the brain microenvir-
onment, serve a neuroprotective role against oxidative
stress, and play a role in neuroimmune responses (for a re-
view on astroglial functions, see [27]). As such, astroglia
play a critical role in maintaining brain homeostasis and
have been heavily implicated in addiction (see [151, 270]).
Microglia are exceptionally morphologically plastic

and dynamic [12], whereby microglial processes rapidly
traverse the parenchyma at a rate of 1–3 μm/min [232].
The reason for this cephalopod-like activity is to main-
tain sampling of the interstitial fluid at a relatively con-
stant rate, and to both respond to pathogens and
influence synaptic transmission with the release of neu-
romodulators [163]. Strikingly, morphological properties
of microglial cells are thought to align with their func-
tional cellular activity states [32, 158, 223]. Resting
microglia are often characterized by numerous thin and
elongated processes. Conversely, neuroimmune activa-
tion can transition microglia into a “reactive” state, char-
acterized by an enlarged soma and a simplified or
reduced process field. Once activated, microglia express
secretory analogs that act to defend the central nervous
system from environmental insults [40, 53]. It is import-
ant to note that a binary categorization of microglia has
been used in the past to differentiate activation states of
microglia, but this does not accurately reflect the array
of microglial activation states. Specifically, M1 pro-
inflammatory phenotype and M2 anti-inflammatory
phenotype were defined by their differential expression
of receptors thought to be involved in pro- or anti-
inflammatory roles. Recently, however, a primed pheno-
type has been proposed in which microglia are not fully
activated in cases of incomplete injury or repetitive mild
injury, and hyper-activated microglia are hypothesized to
result from chronic inflammation [173]. While these cat-
egories of activation states are ubiquitously observed in
neuroinflammatory dysfunction, the complex molecular
profile of microglia across a spectrum of activation has
attenuated their utility. Within the field of addiction,
markers associated with both M1 and M2 stages were
shown after 4-day binge alcohol exposure in multiple
studies [246, 247]. These results support invalidation of
this binary classification system and support a more nu-
anced and rigorous approach to characterizing micro-
glial activation states.
As described above, microglia and astroglia are dy-

namic and constantly moving cells. These cells form
quad-partite synapses with glutamatergic neurons [198]
and contribute significantly to brain homeostasis. Fur-
ther, microglia and astroglia are part of the innate
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immune system, and crosstalk between these cells is ne-
cessary for astroglia to support survival and function of
neurons after injury (e.g., see [123]). Microglia and astro-
glia are intimately involved in neuroimmune signaling
and communicate with each other through various sig-
naling molecules [201]. Next, we will therefore describe
these interactions and how they may play a critical role
in driving aberrant drug-seeking behavior.
Microglia and astroglia communicate and contribute to

inflammatory responses in the brain. Studies have shown
that they do this through signaling molecules such as
glutathione S-transferases GSTM1 and GSTT2 [157], as
well as secreted mediators such as the pro-inflammatory
cytokines TNFα, interleukin (IL)-1β, IL-6, IL-18, and IL-
10 after tissue injury [98]. These cytokines are produced
when dyshomeostasis is detected by microglia, astroglia,
progenitor cells, oligodendrocytes, and neurons. Although
it is well documented that microglia release pro-
inflammatory cytokines such as TNFα (for a review, see
[240]), activated astroglia also release pro-inflammatory
cytokines such as IL-1β [337] and TNFα [44, 60, 96].
Through interactions with tumor necrosis factor receptor
1 (TNFR1), TNFα initiates intracellular signaling cascades
leading to the generation of the prostaglandin E2 [33, 34],
which then leads to elevated intracellular Ca2+ and glu-
tamate exocytosis. The resulting excessive glutamate then
cannot be cleared from the extracellular space due to the
abovementioned TNFα-induced reduction in astroglial
glutamate uptake [101, 313, 346].
Glial cells are known to regulate and control the func-

tion of each other, as well as their migration and reac-
tions, especially in the context of disease. This is
important for astroglia to support neuronal survival fol-
lowing an injury. Further, microglia appear to be a first-
line defense against injury given their rapid recruitment
to sites of damage and phagocytosis of dead cells [123].
A specific example of astroglia-microglia communication
in disease is found in obesity-induced hypothalamic in-
flammation. This disease state is associated with direct
binding of astroglial 4-1BB (which is a member of the
TNF receptor superfamily) to its ligand which is
expressed on microglia (4-1BBL; see [166]). The result
of this binding is release of pro-inflammatory cytokines
such as TNFα and IL-6. Thus, there are direct astroglia-
microglia interactions that are involved in responses to
disease, and this supports the tenet that these interac-
tions may impact glutamate homeostasis which may be
critical in driving drug-seeking motivation.

Quantifying interactions between microglia and astroglia
with structural precision
This section is focused on new technology allows for
more intricate connections to be made between struc-
ture and function of non-neuronal cells. This is critical

to highlight here given the movement in the field away
from the binary classification system of microglia. Ad-
vances in technology could therefore provide more de-
tailed information regarding structural signatures that
reflect these nuanced activation states.
As glial responses have become prevalent indicators of

neuroimmune signaling in many different contexts, in-
cluding addiction, the methods used to quantify glial
morphology have been increasingly developed. The re-
markable structure of both microglia and astroglia, as
well as their clear structure-function relationship, has
contributed significantly to the propensity for these cells
to be studied with microscopy (Fig. 2). As mentioned in
prior sections, the canonical binary classification of
microglial activation states is no longer considered a
valid metric by which microglia should be distinguished.
New technology allows for more intricate connections to
be made between structure and function to be made,
and as such, advances in technology could provide more
detailed information regarding structural signatures that
reflect these nuanced activation states. Below we de-
scribe advances in technology that make it possible to
characterize more nuanced microglial activation states.
Early information on the structural diversity of astro-

glia and microglia and an understanding of how these
cells change morphologically following environmental
insult were typically obtained using standard widefield
microscopy procedures. In this early work, morpho-
logical analyses were often conducted with high-contrast
immunohistochemical labeling utilizing canonical
markers for each cell type; glial fibrillary acidic protein
(GFAP) for astroglia and ionized calcium-binding
adaptor molecule 1 (Iba1) for microglia. At first, these
data sets were often acquired at relatively low magnifica-
tion using a stereological approach for cell counting. In
this design, large numbers of cells were simultaneously
imaged, with primary early outputs being cell number
and the relative intensity of the label used. Intensity of
the signal was a particularly common early output vari-
able as the signal brightness for GFAP was used as an
index of reactivity in the case of astroglia [176, 284] and
signal brightness of Iba1 and activation state in the case
of microglia [43, 97, 142]. When specifics about the
morphological aspects of microglia and astroglia were
initially investigated, multiple optical sections within
each data set were not always obtained, and when this
type of sampling was performed, sections were often col-
lapsed into flattened 2D images for the final analysis of
cellular structure, significantly restricting the span of
processes that can be measured [1, 129, 338]. While
these studies provided vital information, advancements
in microscopy, 3D digital rendering, and analysis tech-
niques have advanced our ability to observe and analyze
non-neuronal cells.
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More recently, high-magnification 3D imaging and
analysis of morphometrics have been performed on
microglia and astroglia, often utilizing new techniques
for genetic and viral vector-based labeling [75, 175, 271,
277, 308–310, 314]. The usage of modern genetic and
viral labeling in conjunction with updated confocal mi-
croscopy methods has advanced morphological analysis
of non-neuronal cells, improving upon earlier strategies
which use incomplete or inconsistent cellular labeling,
limited optical sampling, and lower resolution. Ultim-
ately, the application of modern microscopy and digital
rendering and analysis techniques will continue to im-
prove our understanding of these structurally dynamic
cell types [10, 170, 222, 271]. Recent advancements in
the resolution of confocal microscopy have become
achievable through technical improvements in micro-
scope detectors; these technical advances have been
combined with enhanced deconvolution algorithms that
more precisely account for light scattering. These tech-
niques and expanding technologies allow for super-
resolution light microscopy [71, 137, 321]. Accordingly,
the fidelity of the digital reconstruction of non-neuronal
cell structure acquired with these techniques has im-
proved dramatically over the last decade [268]. However,
these methods are just beginning to be harnessed for the
morphological analysis of astroglia and microglia at the
single-cell level with sub-micron precision, so further ex-
pansion in analysis of non-neuronal cell types with this
technology is necessary [143, 264, 275].
Given the clear structure-function relationship de-

scribed in the section above, microglia are often ana-
lyzed optically to assess their activation state. As
described above, increased soma size and reduced
branching patterns commonly act as structural bio-
markers for activation [72, 94, 222]. While the structural
properties of microglia are commonly used to classify
them into either an activated or a resting state, we de-
scribe above that a binary two-state categorization is

overly simplistic (i.e., M1 and M2), as modern perspec-
tives indicate the presence of a continuum of unique ac-
tivation states [232]. As a result, parameters like cell
area, cell volume, process length, branch points, Sholl in-
tersections, and the territory occupied by microglial pro-
cesses are all commonly used to interpret and
understand how changes in morphological characteris-
tics relate to microglial activation [94, 132, 222]. Micro-
glial complexity has also been quantitatively measured
using fractal dimension, which is expressed as the ratio
of increasing detail to increased magnification seen in
microscopy [147]. More recent examinations include
levels of IL-1β cluster of differentiation 68 (CD68), or
TNFα expression within individual microglial cells as
additional metrics for understanding their relative acti-
vation states [93, 161, 184, 344].
Output variables and procedures to analyze microglial

morphological properties have been more firmly estab-
lished than what has been the case for their astroglial
counterparts. There has been a considerable amount of
difficulty in investigating astroglial structure, as astroglial
branching processes are relatively small and highly rami-
fied [130]. Accordingly, the usage of older light micros-
copy methods often makes these processes difficult to
isolate and resolve. In addition, while GFAP is a useful
marker for investigating astroglia, a well know problem
is that even the thinnest GFAP branches do not extend
into very fine peri-synaptic processes of astroglia, thus
measures of density are limited in their quantification of
astroglial morphology [125]. As described above, for the
highest fidelity confocal images of the astroglial plasma
membrane, dye filling, genetic labeling, or viral vectors
are needed. The work of the Khakh lab among others
has been seminal in this regard, with the design and im-
plementation of reliable membrane-targeted cell type-
specific reporter and Ca2+ indicator constructs. These
vectors reveal a striking astroglial cellular architecture
that extends well beyond the GFAP arbor [164, 273,

Fig. 2 High-resolution 3-D image of an isolated Iba-1-positive microglia with orthogonal views. a Iba-1 labeling and modern confocal microscopy
can be reliable used to label and image microglial syncytia (white). Within these syncytia, individual microglia (green) can be digitally isolated
from neighboring cells and subsequently analyzed. b Here a space filling 3D render of the isolated microglia is shown (grey). This type of digital
analyses can be used to obtain data for general physical parameters (surface area and volume). c Here the microglial cell of interest is shown
(green) overlaid with a skeletonization (white). This type of analysis can be used to obtain structural characteristics (Sholl intersections, branch
number, and branch order). Hashed boxes depict locations of inset panels. Scale bar depicts 10 μm
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274]. Notably, these constructs reveal an elegant nebu-
lous cellular structure that is far more complex than
what is revealed by GFAP immunohistochemistry and
also much more complete than what can be observed
with conventional cytosolic GFAP-promoter driven re-
porter constructs. The Khakh group continues to
innovate in this area, constructing and implementing
improved tools to study astroglia and their interaction
with neurons [14, 339, 340]. It is also important to note
that even the most advanced light microscopy cannot be
used to completely visualize the finest astroglial pro-
cesses, which are estimated to be approximately as thin
as 30 nm at the tips [30, 130, 164]. Thus, electron mi-
croscopy (EM) has been extremely valuable for the ana-
lysis of the organization of non-neuronal membrane
processes [100, 130]. While 3D serial EM is very labor
intensive, this technique has also been used to construct
breathtaking reconstructions of the complex processes
of astroglia and microglia and their interactions with
neurons [30, 41, 51, 195, 233, 263].

Targeting neuroimmune and glutamate signaling
for pharmacotherapeutic treatment of substance
use disorders
In this section, we will highlight neuroimmune-glutamate
mechanisms as potential targets for pharmacotherapies to
treat SUDs. We will detail compounds that are currently
being examined clinically and/or preclinically which may
restore glutamate homeostasis, potentially through inter-
actions with neuroimmune signaling. We will also high-
light neuroimmune dysregulations that have been found
clinically and/or preclinically, which may be important for
future pharmacotherapeutic targeting.
Neuropsychiatric diseases, including SUDs, are influenced

by interactions between neurons and glia that impact glu-
tamate homeostasis. As discussed above, disruptions in glu-
tamate homeostasis and glutamate transporter function
(specifically, GLT-1) in brain reward circuits during psy-
chostimulant exposure contribute to reinforcement and re-
lapse. Putative therapeutics that enhance the expression of
GLT-1 (e.g., ceftriaxone, N-acetylcysteine (NAC), riluzole)
decrease drug-seeking behaviors in preclinical assays [168,
262, 326]. NAC is the most commonly studied glutamate
compound in clinical trials [116, 197, 202], yet has shown
checkered clinical success (e.g., [178]). Emerging evidence
suggests that pharmacological agents acting upstream of
glutamate transport systems (e.g., GLT-1 and system Xc) to
influence broader aspects of glial function also disrupt
drug reinstatement and relapse. One of the most stud-
ied agents is propentofylline (PPF), which is a pharma-
cologically diverse methylxantine derivative that acts
through multiple mechanisms, including enhancement
of GLT-1 transporter expression, inhibition of
phosphodiesterase, and enhancement of adenosine

uptake [302, 305]. Methylxanthines are approved by the
Food and Drug Administration (FDA) to treat asthma
and peripheral vascular disease, including intermittent
claudication [86, 226], and are thus highly amenable for
repurposing to other therapeutic indications. Evidence
indicates that PPF, when administered systemically (but
not acutely) reduces relapse to cocaine seeking that is
induced by both cues and exposure to cocaine itself
[254]. Moreover, the efficacy of PPF is cocaine-specific
and does not extend to effects on sucrose seeking.
Interestingly, the suppression of cocaine relapse by PPF
was linked to changes in glutamate transport function,
as the efficacy of PPF was dependent on the restoration
of GLT-1 expression within the NA. Although the
mechanism by which PPF reduces relapse to cocaine
seeking is not entirely understood, it seems reasonable
that normalization of glutamate homeostasis through
restoration of astroglia-medicated clearance of extracel-
lular glutamate is a contributing factor [99, 228]. Other
potential explanations for how PPF reduces cocaine
seeking include inhibition of phosphodiesterase, which
reduces cocaine sensitization and reinforcement [188,
213, 267, 345], and interactions with adenosine A1 or
A2 receptors, which influence behavioral responses to
cocaine [47, 236, 315]. The efficacy of PPF also extends
to other drugs of abuse, as systemic treatment with PPF
blocks rewarding effects of methamphetamine and
morphine in conditioned place preference assays [229].
As mentioned above, activation of adenosine receptors

may influence drug-seeking behavior, and likely does so
through the regulation of glutamatergic signaling. For
example, acute ethanol exposure elevates extracellular
adenosine levels by selective inhibition of the type 1
equilibrative nucleoside transporter (ENT1), and it was
found that genetic deletion of ENT1 resulted in reduced
expression of EAAT2 [257]. Overexpression of adeno-
sine 2A (A2A) receptors via a neuron-specific enolase
promoter in rats receiving nicotine treatment resulted in
a rise in glutamate levels, whereas the opposite effect
was found in wildtype nicotine-treated animals [146].
Future studies should examine small molecule com-
pounds that upregulate ENT1 and A2A as indirect mech-
anisms that consequently restore EAAT2 expression and
rescue glutamate homeostasis within the context of ad-
diction. Furthermore, sex differences in these outcomes
are critical for enhancing translatable findings.
An increasing body of evidence suggests that puriner-

gic systems, through broad regulators of glial cell physi-
ology and possible effects on glutamate homeostasis,
influence SUDs. In particular, purinergic P2X7 receptors,
which are expressed by astroglia and microglia and acti-
vated by extracellular ATP, stand out as key elements of
the purinergic system that are linked to physiological
underpinnings of drug reward, reinforcement, and
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relapse. Activation of P2X7 receptors causes microglia to
become activated and release endogenous substrates, in-
cluding glutamate, dopamine, pro-inflammatory cyto-
kines (e.g., IL-1β, IL-6 and TNFα), and reactive oxygen
species, that facilitate psychostimulant reward and
reinforcement [91, 92, 127, 245], suggesting a link be-
tween the pro-inflammatory actions of P2X7 and CNS
diseases. Recent evidence indicates that P2X7 receptor
blockade with the competitive, reversible P2X7 antagon-
ist A438079 inhibits facilitation of intracranial self-
stimulation (ICSS) by the psychostimulant methylene-
dioxypyrovalerone (MDPV), a “bath salt” synthetic cathi-
none with a mechanism of action similar to cocaine but
with enhanced potency in blocking dopamine trans-
porters [26, 102]. The ability of A438079 to reduce psy-
chostimulant reward enhancement in an ICSS assay is
most likely due to reduction of P2X7 receptor activity,
as A438079 (IC50 = 100 and 300 nm at rat and human
P2X7 receptors, respectively) lacks significant activity at
other purinergic type 2 (P2) receptors (IC50 > 10 μM),
shows negligible activity at non-purinergic receptors and
ion channels, and penetrates the brain [82]. Cellular ex-
periments also show that P2X7 mRNA levels and P2X7
receptor protein expression within the NA are increased
by MDPV, further supporting a role for P2X7 receptors
in psychostimulant reward enhancement [102]. How-
ever, elevated P2X7R protein was also found in spinal
microglia of morphine-dependent rats, demonstrating its
involvement in reward-seeking behavior induced by an
array of drug types [50]. Because both P2X7 receptor ac-
tivation and chronic psychostimulant exposure induce
neuroinflammation, which facilitates psychostimulant
dependence, it is plausible that psychostimulants such as
MDPV, cocaine, and methamphetamine induce upregu-
lation of P2X7 receptors leading to downstream release
of pro-inflammatory cytokines (e.g., IL-1, IL-6 and
TNFα) that contribute to abuse liability [13, 174, 298]. It
is also worth mentioning that P2X7 receptor antagonism
or genetic deletion reduces hyperactivity induced by am-
phetamines [35, 69, 118]. It has also been found that
modulation of the P2X4 receptor mediates the enhance-
ment of microglial migration by morphine [135], and al-
cohol exposure leads to upregulation of P2X4 receptors
in embryonic stem cell-derived microglia cells [112].
There is limited study of the involvement of other puri-
nergic receptors in behavior underlying SUDs, and while
P2Y12 expression was found to be lower in murine fe-
male microglia than in male, sex differences in puriner-
gic receptors have not been evaluated in the context of
addiction.
Although central functions of chemokines were origin-

ally thought to be limited to chemotaxis and neuroin-
flammation, a growing body of evidence suggests that
chemokine systems influence physiological circuits,

including dopaminergic and perhaps glutamatergic,
which underlie drug addiction [2, 70]. The CXCL12/
CXCR4 chemokine ligand/receptor pair is one particular
interest. CXCL12 (e.g., stromal cell-derived factor one
alpha (SDF-1α)) is one of the few chemokines found in
the brain and is secreted by neuronal and non-neuronal
populations [120, 295]. CXCL12 binds to and activates
at least two receptors, CXCR4 and CXCR7, with the
former being the major receptor for CXCL12 in the
brain that is expressed by neurons, astroglia, and micro-
glia [19, 39]. CXCR4 receptor immunoreactivity is
expressed by dopamine neurons in the substantia nigra
[23] and GABAergic MSNs in the lateral shell of the NA
[316]. The FDA has approved a CXCR4 antagonist called
AMD3100 (Plerixafor) that is available to investigate re-
ceptor function and displays selectivity for CXCR4
against other chemokine receptors (e.g., CXCR1 through
CXCR3, or CCR1 through CCR9 [332]).
In the context of cocaine use disorder, plasma levels of

CXCL12 are decreased in human cocaine abusers during
withdrawal and elevated in mice following acute cocaine
exposure [9]. Notably, CXCL12 is one of only two che-
mokines (CXCL12 and CX3CL1) altered in the plasma
of cocaine abusers during abstinence and the only che-
mokine found to be positively correlated with the history
of pathological cocaine use and severity of dependence
[9]. CXCL12 has been found to have a variety of affects
in different brain regions. For example, when adminis-
tered into the lateral ventricles or ventral tegmental area
(VTA), CXCL12 enhances locomotor activation pro-
duced by cocaine [317]. CXCL12 injected into the sub-
stantia nigra enhances extracellular dopamine in the
dorsal striatum in a CXCR4 receptor-dependent manner
[120, 279]. More recently, CXCR4 antagonism by
AMD3100 was shown to reduce cocaine conditioned
place preference and locomotor activation [165], and
similar effects were observed for AMD3100 against
MDPV [239]. At the cellular level, both cocaine and
MDPV enhance CXCL12 gene expression in the meso-
limbic circuit [165, 239]. Although the mechanisms
underlying the efficacy of AMD3100 against psychosti-
mulant reward and locomotor activation are unclear, a
downstream reduction of mesolimbic dopamine trans-
mission through CXCR4 receptor blockade is a plausible
explanation based on the current literature. Given that
CXCR4 receptor activation reduces glutamate release in
mouse cerebellar slices [251], interactions between
CXCR4 and glutamate systems in mesocorticolimbic cir-
cuits may also play a role, and future studies should in-
vestigate how CXCR4-glutamate crosstalk impacts
psychostimulant reinforcement and relapse.
Studies have shown that the receptor CX3CR1 is in-

volved in cocaine use disorder. Communication between
CX3CR1 and its ligand, fractalkine (CX3CL1), mediates
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neuroprotection and promotes microglial activation
[252]. Further, this interaction between fractalkine and
CX3CR1 has been implicated in cocaine dependence in
the mouse hippocampus following social defeat (SD
[218];). After exposure to cocaine-induced CPP, WT-SD
mice showed an increase in the p-p65/p65 NF-κB ratio
and pCREB/CREB, while CX3CR1-KO-SD mice exhib-
ited opposite changes [218]. These findings suggest a
role of CX3CR1 in the activation of transcription factors
that modulate the development of CPP, though further
research is needed to establish its role in other drug-
seeking behaviors. While no change in glutamatergic re-
ceptor subunit protein expression was found in
CX3CR1-KO mice, another study discovered a low
AMPA/NMDA ratio in CX3CR1-KO mice during devel-
opment, leaving open the question of involvement of
CX3CR1 in glutamate signaling. Further, sex differences
have been discovered in the modulation of inflammatory
response by CX3CR1 whereby female CX3CR1-KO mice
showed WT “male-like” microglial activation in response
to diet-induced inflammation [83]. Taken together, these
studies lay the groundwork for further research on sex
differences in SUD-induced neuroinflammation and may
warrant sex-specific lines of research for pharmacothera-
peutic development to treat SUDs.

Conclusions
Here we propose that neuroimmune signaling impacts
glutamate homeostasis in the neurobiological processes
underlying drug addiction. The role of neuroimmune
processes in SUDs is not well understood and is an exciting
and novel area of research. Notably, tools to examine the
role of pro-inflammatory signals and cellular morphology
with high resolution are currently being developed, which
will allow for unprecedented understanding of how neu-
roimmune signaling impacts glutamate plasticity and drug-
seeking motivation. There is also a plethora of evidence for
sex differences in neuroimmune mechanisms involved in
glutamate homeostasis in addiction. Further, small mol-
ecule pharmacotherapies that target the glutamate system
have been studied at both the preclinical and clinical levels
which may impact neuroimmune signaling, such as NAC,
propentofylline, or β-lactam antibiotics such as ceftriaxone.
However, additional pharmacotherapeutic development is
needed given the checkered clinical efficacy of some of
these glutamatergic compounds (e.g., NAC [107, 178]).
Taken together, we propose a neuroimmune-glutamate cir-
cuit that is critical in driving use of drugs of abuse, which
may be sex-specific and impacted by steroid hormones.
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