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ABSTRACT 
 

 
Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in a plethora of 

fundamental biological processes ranging from muscle contraction to the formation 

of memories. The studies described in this work focus on the transcriptional 

regulation of the CHRNB4 gene, which encodes the !4 subunit of neuronal nAChRs. 

We previously identified a regulatory sequence (5´– CCACCCCT –3´), or “CA box”, 

critical for CHRNB4 promoter activity in vitro. Here I report transcription factor 

interaction at the CA box along with an in vivo analysis of CA box transcriptional 

activity. My data indicate that Sp1, Sp3, Sox10 and c-Jun interact with the CHRNB4 

CA box in the context of native chromatin. Using an in vivo transgenic approach in 

mice, I demonstrated that a 2.3-kb fragment of the CHRNB4 promoter region, 

containing the CA box, is capable of directing cell-type specific expression of a 

reporter gene to many of the brain regions that endogenously express the CHRNB4 

gene.  Site-directed mutagenesis was used to test the hypothesis that the CA box is 

critical for CHRNB4 promoter activity in vivo. Transgenic animals were generated in 

which LacZ expression is driven by a mutant form of the CA box.  Reporter gene 

expression was not detected in any tissue or cell type at ED18.5.  Similarly, I 

observed dramatically reduced reporter gene expression at PD30 when compared to 

wild type transgenic animals, indicating that the CA box is an important regulatory 

feature of the CHRNB4 promoter. ChIP analysis of brain tissue from mutant 

transgenic animals demonstrated that CA box mutation results in decreased 

interaction of the transcription factor Sp1 with the CHRNB4 promoter.  



"

I have also investigated transcription factor interaction at the CHRNB4 promoter CT 

box, (5´– ACCCTCCCCTCCCCTGTAA –3´) and demonstrated that hnRNP K 

interacts with the CHRNB4 promoter in an olfactory bulb derived cell line. 

Surprisingly, siRNA experiments demonstrated that hnRNP K knockdown has no 

impact on CHRNA5, CHRNA3 or CHRNB4 gene expression.  Interestingly, 

knockdown of the transcription factor Pur! results in significant decreases in 

CHRNA5, CHRNA3 and CHRNB4 mRNA levels. These data indicate that Pur! can 

act to enhance expression of the clustered CHRNA5, CHRNA3 and CHRNB4 genes. 

Together, these results contribute to a more thorough understanding of the 

transcriptional regulatory mechanisms underlying expression of the CHRNB4 as well 

as the CHRNA5 and CHRNA3 genes, critical components of cholinergic signal 

transduction pathways in the nervous system. 
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CHAPTER I: INTRODUCTION 

 

Neuronal communication  

The transmission of signals through synapses is an essential component of the 

neuronal circuits responsible for a wide array of physiological functions including 

memory formation, reward, reinforcement, perception, and emotion (Leisman and 

Koch, 2009). The discovery of the synapse would not have been possible without 

the advancements in staining techniques pioneered by the Italian anatomist Camillo 

Gogli and later refined by the Spanish anatomist Santiago Ramón y Cajal. Using the 

“reazione nera” or black reaction, Golgi was able to stain the membranes of 

neuronal tissue with a silver-chromate precipitate (Golgi, 1873). This technique 

stained the soma, axon and dendrites of a neuron black allowing anatomists to 

observe the morphological aspects of neurons in stunning detail.  However, due to 

limitations in the staining procedure, myelinated axons were not stained effectively, 

making the projections of adjacent neurons difficult to resolve. The limitations of 

Golgi’s staining technique undoubtedly contributed to his sustained defense of 

Joseph von Gerlach’s reticular hypothesis (von Gerlach, 1871), a widely accepted 

theory at the time proposing that the brain consists of a large network of directly 

interconnected cells. Cajal refined Golgi’s silver-chromate staining and also used 

brain tissue from younger animals in order to minimize the amount of myelinated 

axons in the preparation. The resulting drawings of neural tissue (Fig. 1.1) clearly 

demonstrated that neurons are independent elements and not a network of 

interconnected filaments (Cajal, 1888, 1894).
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Figure 1.1: Chick cerebellum. Shown here is a drawing of neurons in the chick 
cerebellum done by Ramón y Cajal (Cajal, 1888; Sotelo, 2003).
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Cajal’s findings quickly gained the attention of several prominent German anatomists 

including Wilhelm von Waldeyer and Rudolph Albert von Kölliker, who had both 

previously been ardent supporters of the reticular hypothesis.  Cajal’s work also 

provided the fundamental basis for the “neuron doctrine” proposed by Waldeyer 

(Waldeyer, 1891) in a seminal review article combining the observations of several 

scientists including Albert von Kölliker, Camillo Golgi, Franz Nissl, Auguste 

Forel, Wilhelm His and Santiago Ramón y Cajal" Specifically, the neuron doctrine 

refuted the reticular hypothesis by stating that neurons are connected to each other 

at distinct sites of contact (later defined as synapses) and not through a cytoplasmic 

continuity.  The neuron doctrine also states that the neuron is the structural and 

functional unit of the nervous system and has three main parts, the dendrites, soma 

and axon, with conduction taking place in the direction of dendrite to soma, ending in 

the arborizations of the axon (Waldeyer, 1891).   

 

The synapse 

The term “synapse” was derived from “synaptein” a term coined by the British 

physiologist Charles S. Sherrington. “Synaptein” is a combination of the Greek 

words "syn-” meaning together, and "haptein" to clasp (Sherrington, 1906). Although 

first described histologically by Cajal, the synapse would not be fully resolved until 

the invention of the electron microscope and the subsequent work of George 

Palade, Eduardo de Robertis and George Bennett (De Robertis and Bennett, 1955).  

Electron micrographs of the frog sympathetic ganglia and the neuropile of the 
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earthworm nerve cord showed for the first time, in high magnification, detailed 

images of the synaptic ultrastructure.  These experiments confirmed the seemingly 

clairvoyant hypotheses regarding the synapse and neuronal communication made 

by anti-reticularists like His, Nansen, Forel, and Cajal. Neuronal signals are 

transmitted though two main types of synapses, the electrical synapse and the 

chemical synapse (Kandel et al., 2000).   

 

Many scientists in the early 20th century assumed that electrical synaptic 

transmission was the most likely method of neuronal communication.  However, 

proof of the existence of the electrical synapse would not come until the 1950s with 

the work of Furshpan and Potter, demonstrating functional electrical synapses in the 

giant neurons of the crayfish (Furshpan and Potter, 1957, 1959). The electrical 

synapse is a conductive link formed at a 3.5 nm gap between the presynaptic and 

postsynaptic cell (Bennett and Zukin, 2004).  At the electrical synapse, several 

receptor proteins span the membranes of both cells, effectively connecting the 

cytosol of the pre- and postsynaptic cells and allowing for the flow of electrical 

current.  Signal transduction through electrical synapses is characterized by rapid 

conduction of nerve impulses, bi-directional signal transmission, and lack of 

inhibitory action (Bennett and Zukin, 2004). Despite the incredibly fast rate of 

transmission, electrical synapses cannot amplify the magnitude of the incoming 

signal from the presynaptic cell, i.e., the induced response in the postsynaptic cell is 

always smaller than the original signal from the presynaptic cell (Kandel et al., 

2000).  
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Signal transduction through chemical synapses is the primary mode of neuronal 

communication and is essential for the function of the neural circuits responsible for 

perception and thought (Leisman and Koch, 2009). Unlike the electrical synapse, the 

chemical synapse is unidirectional, can either be inhibitory or excitatory and can 

amplify the extent of the incoming signal.  The chemical synapse has several key 

features: first, a presynaptic neuron that when activated releases a chemical 

messenger called a neurotransmitter into the synaptic cleft; second, a physical 

space of approximately 20 – 40 nm that separates the pre- and postsynaptic cells 

through which neurotransmitters diffuse; and finally, receptor elements that 

recognize the neurotransmitters released from the presynaptic cell and initiate signal 

transduction in the postsynaptic cell (Fig. 1.2) (Kandel et al., 2000).  

 

Concrete evidence for chemical signal transmission was not uncovered until 1921 

when the German pharmacologist Otto Loewi performed his famous experiment 

using a frog heart nerve-muscle preparation (Loewi, 1921). Loewi dissected two 

beating frog hearts, the first heart with the vagus nerve still attached and the second 

extracted on its own. He then placed each heart in a saline solution and then 

electrically stimulated the vagus nerve on the first heart, resulting in a decrease in 

heart rate.  When Loewi applied some of the liquid surrounding the first heart 

(“Vagusstoff”) to the second heart, he also observed a reduction in heart rate. 
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Figure 1.2: The chemical synapse. Schematic representation of the synapse with 
the presynaptic nerve cell depicted in blue and the postsynaptic cell depicted in 
orange.  In the presynaptic cell, synaptic vesicles are depicted as yellow circles with 
neurotransmitters depicted as smaller grey circles, mitochondria are depicted as red 
rectangles.  In the postsynaptic cell, ligand-gated ion channels are depicted as green 
rectangles with flow of ions through activated channels depicted as red arrows. G-
protein coupled receptors are depicted as purple rectangles with the inactive G-
protein, shown in pink, bound to GDP and the active G-protein bound to GTP (red) 
disassociated from the G-protein coupled receptor. The direction of the propagation 
of the action potential is shown under the presynaptic cell as a lightning bolt and a 
yellow arrow. 
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These results indicated that a soluble chemical messenger from the vagus nerve 

was released upon electrical stimulation and that application of this chemical 

messenger could slow the heart rate of an un-stimulated heart (Loewi, 1921; Loewi 

and Navratil, 1926).  

 

Additional evidence supporting chemical neurotransmission was provided by Henry 

Hallette Dale, who suggested that acetylcholine (ACh) may function as chemical 

neurotransmitter in 1914 (Dale, 1914; Fishman, 1972). Years later while studying the 

physiological effects of ergot, a fungus that grows on rye and related plants, Dale 

discovered that the active component of the ergot fungus could profoundly inhibit 

heart rate when intravenously injected into an anesthetized cat (Dale, 1953). During 

his experimentation with ergot, he began to notice that the physiological effects 

elicited by the unknown alkaloid from the fungus appeared to be identical to those 

elicited by ACh. These results caused Dale to focus his attention on testing the 

hypothesis that ACh acts as a chemical neurotransmitter. In a series of experiments 

performed between 1929 and 1936, he was able to demonstrate that ACh is 

released at nerve endings following electrical stimulation (Dale, 1935) and that 

application of ACh to muscle tissue resulted in contraction in the absence of 

electrical stimulation (Dale et al., 1936). Despite the emerging body of evidence 

supporting the existence of chemical transmission, many scientists still believed that 

neuronal communication was mediated by electrical synapses. Bernard Katz 

provided definitive proof of chemical transmission in a series of experiments using 

intracellular electrodes to study the neuromuscular junction (NMJ), a specialized 
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synapse formed between motor neurons and muscle fibers. These experiments 

demonstrated that the fluctuations in membrane potential observed while recording 

from the muscle fiber were the result of the random release of synaptic vesicles 

containing ACh from the motor neuron (Fatt and Katz, 1951). Katz later 

demonstrated that chemical synaptic transmission at the NMJ was unidirectional and 

that exogenous application of ACh to the NMJ resulted in muscle contraction, similar 

to what is observed following electrical stimulation of the motor neuron (Katz, 1969). 

These data confirmed the hypotheses made years earlier by Loewi and Dale 

regarding ACh and chemical neurotransmission.  

 

Neurotransmitters and their receptors 

Neurotransmitters are defined as endogenous chemical messengers that relay, 

amplify and modulate neuronal signals (Purves et al., 2008).  In order for a molecule 

to be considered a neurotransmitter it must fulfill four specific criteria: first, the 

compound is synthesized in the neuron; second, it is present in the presynaptic 

terminal and is released in amounts that are sufficient to exert a defined response in 

the postsynaptic cell; third, exogenous application of the substance in question at a 

reasonable concentration must mimic exactly the action of the endogenously 

released transmitter; finally, a method of inactivation or clearance must exist to 

remove the chemical from the synaptic cleft after it is released (Kandel et al., 2000). 

Neurotransmitters can be divided into three main classes; amino acid 

neurotransmitters, biogenic amines and neuroactive peptides (Kandel et al., 2000).  
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The most abundant neurotransmitter in the central nervous system (CNS) is the 

amino acid neurotransmitter glutamate, which like other amino acid transmitters 

including glycine, !-aminobutyric acid (GABA), aspartate and serine, can be 

synthesized at nerve terminals from non-essential amino acids (Purves et al., 2008).  

Glutamate is the primary excitatory neurotransmitter in the brain. Neurons that use 

glutamate as a neurotransmitter are located in a vast array of brain regions. GABA is 

also predominant in the CNS and plays a mainly inhibitory role in the brain, which is 

likely a consequence of the fact that GABA is the primary neurotransmitter for 

inhibitory interneurons (Kandel et al., 2000). Amino acid neurotransmitters like 

glutamate and GABA are responsible for the majority of fast synaptic transmission in 

the CNS. Disruption of amino acid neurotransmission may contribute to the 

development of neurological disorders. Specifically, perturbations of inhibitory 

signaling mediated by GABA in the brain can result in seizures. Furthermore, 

disruption of GABA signaling has also been implicated in anxiety disorders, 

premenstrual dysphoric disorder, and schizophrenia (Wong et al., 2003).  

 

The second class of neurotransmitters is the biogenic amines, which include 

dopamine, epinephrine, norepinephrine and serotonin. These neurotransmitters are 

small charged molecules derived from amino acids (Purves et al., 2008). Typically, 

these neurotransmitters are produced in short biosynthetic pathways that are 

regulated at a single enzymatic step. Mature neurons that participate in biogenic 

amine neurotransmission typically only express one type of “controlling enzyme” 

(Kandel et al., 2000). Disruption of this type of neuronal signaling has been 
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implicated in several neurological and psychiatric disorders and interestingly, 

modification of biogenic amine signaling is also the mechanism of action for several 

drugs of abuse including cocaine and methamphetamine (Deadwyler, 2010; 

Yamamoto et al., 2010).   

 

Unlike amino acid neurotransmitters and biogenic amines, neuroactive peptides 

such as insulin, substance P and neuropeptide Y cannot be synthesized at nerve 

terminals and must instead be derived from secretory proteins that are assembled 

and processed in the cell body. Once processed, these peptides are loaded into 

vesicles and transported to nerve terminals where, like the other classes of 

neurotransmitters, they are released into the synaptic cleft following activation of the 

presynaptic cell. Neuroactive peptide signaling can result in either excitation or 

inhibition of target cells. Signaling with these molecules has been implicated in 

regulation of sensory perception and emotions (Katsouni et al., 2009; Pape et al., 

2010).    

 

Neurotransmitters evoke a response in the postsynaptic cell by interacting with 

members of a diverse group of proteins called neurotransmitter receptors. These 

proteins are embedded in the postsynaptic membrane and recognize specific 

neurotransmitter molecules. Once activated by the binding of neurotransmitter, these 

receptor proteins modify the electrical properties of the postsynaptic cell by either 

opening or closing ion channels. In this manner, the chemical signal mediated by 

neurotransmission from the presynaptic cell can be converted back into an electrical 
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signal in the postsynaptic cell. Molecules that interact with a receptor and initiate 

functional changes in the physiological properties of the postsynaptic cell are called 

agonists, whereas those that bind competitively or block the interaction of 

neurotransmitters with their receptors are called antagonists.  

 

At present, neurotransmitter receptors can be classified into two main superfamilies 

based on their mechanism of action following the binding of the ligand. The first 

neurotransmitter receptor superfamily consists of ligand-gated ion channels. 

Ionotropic receptors allow for the flow of ions through a central pore as a result of 

the binding of neurotransmitter. The second neurotransmitter receptor superfamily, 

known as metabotropic receptors, initiates a signal cascade following ligand binding 

that has a downstream effect on ion permeability. Metabotropic receptors will not be 

discussed at length in this work. Ligand gated ion channels are typically multimeric 

structures consisting of two main functional units, an extracellular segment that 

recognizes the neurotransmitter and a membrane-spanning domain that forms a 

pore through which ions flow. Upon binding of ligand, the channel protein goes 

through a conformational change allowing for the flow of ions (Unwin, 1993).  

Signaling through these types of receptors occurs rapidly and usually only lasts for a 

few milliseconds (Purves et al., 2008). 

 

The Cys-loop superfamily  

The Cys-loop superfamily constitutes a major class of ligand gated ion channels in 

mammals and comprises both cationic (acetylcholine (ACh) and 5-
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hydroxytryptamine (5-HT3) receptors) and anionic (GABA and glycine receptors) 

channels (Connolly and Wafford, 2004). Mature Cys-loop receptors are pentameric 

structures assembled with the combination of five subunits arranged around a 

central pore. These receptors can either be homomeric (assembled with 5 copies of 

a single subunit protein) or heteromeric (assembled with combinations of several 

subunits). Subunits in the Cys-loop superfamily have an extracellular amino-

terminus, four transmembrane domains with a variable intracellular loop between 

transmembrane segments three and four and an extracellular carboxyl-terminus 

(Sine and Engel, 2006). The term “Cys-loop” refers to a characteristic sequence of 

13 residues linked by covalently bound cysteines forming a closed loop, located in 

the extracellular amino terminus of each individual receptor subunit protein (Connolly 

and Wafford, 2004). Cys-loop receptor subunits are constructed on a modular basis, 

with the extracellular domain forming the agonist binding sites and the 

transmembrane domain containing the channel gate, which regulates ion selectivity 

and pore, through which ions flow (Miller and Smart).  

 

Interestingly, the genes encoding of the Cys-loop receptor superfamily subunits are 

distributed in two monophyletic groups (Connolly and Wafford, 2004), with the 

subunits that form anionic channels (e.g., GABAA, and Glycine,) in the first group 

and the subunits that form cationic channels (e.g., ACh and 5-HT3 receptors) in the 

second. In mammals, sequences of six !, three ", three #, one $, three %, one &, one 

' and one ( GABAA receptor subunits have been reported (Barnard et al., 1998) 

with four isoforms of an !-subunit (!1 – !4) and one variant of a "-subunit ("1) 
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reported for Glycine channels (Moss and Smart, 2001). A total of a total of 17 ACh 

receptor subunits (!1-10, "1-4, #, $ and %) have been identified (Albuquerque et al., 

2009) whereas just three 5HT3 receptor subunits have been reported (5-HT3A, 5-

HT3B and 5-HT3C) (Reeves and Lummis, 2002). 

 

Though not part of the Cys-loop superfamily, an additional class of ionotropic 

channels gated by the excitatory neurotransmitter glutamate also exists (Kandel et 

al., 2000). Glutamate receptors include members of the N-methyl-D-aspartate 

(NMDA), !-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and 

kainate receptor classes (Madden, 2002). Like the Cys-loop receptors, glutamate 

receptors can also be homomeric or heteromeric. However, these receptors are 

assembled into cation-selective tetramers as opposed to the pentameric 

organization observed in the Cys-loop receptor family. Furthermore, the structure of 

the individual glutamate receptor subunits also differs from what is observed in the 

Cys-loop family. Glutamate receptor subunits have an extracellular N-terminus, three 

transmembrane domains (TM1, TM3 and TM4), a channel lining re-entrant ‘p-loop’ 

located between TM1 and TM3, and an intracellular C-terminus (Traynelis et al., 

2010). 

 

Muscle nicotinic receptors 

The concept of a receptor protein responsible for the recognition and transmission of 

a signal from a neuron to a muscle fiber was first hypothesized in the early 20th 

century by John Newport Langley (Langley, 1905).  Langley developed the idea of a 
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“receptive substance” from the observation that nicotine, the addictive component of 

tobacco, caused tonic contraction of denervated muscles in the frog, fowl, and toad, 

which could be blocked by the poison, curare (Langley, 1909b, a, 1914).  From 

these experiments Langely concluded that the “receptive substance of muscle” 

received stimuli from the nerve cell, and transferred it to the muscle cell, ultimately 

resulting in contraction (Maehle, 2004). The muscle type nicotinic acetylcholine 

receptor (nAChR) was the first ligand-gated ion channel protein to be isolated and 

purified. Using the electric organ of the eel Electrophorus, Jean Pierre Changeux 

and colleagues were able to isolate the receptor protein in 1970. Purification was 

achieved by exploiting the receptor’s high affinity for !-bungarotoxin (!-Bgtx), a 

component of the venom of the Bungaris Multicinctus snake that competitively and 

irreversibly binds to the receptor (Changeux et al., 1970). Further experiments 

demonstrated that the muscle type nicotinic receptor is a membrane spanning 

allosteric glycoprotein with an approximate molecular weight of 275,000 Da (Weill et 

al., 1974). Muscle type nicotinic receptors are pentameric structures consisting of 

five types of polypeptide chains (!, ", #, $ and %)" As discussed above, each muscle 

nAChR subunit protein contains four putative transmembrane spanning domains 

deemed M1-M4 (Fig. 1.3 A), with the M2 segment of each subunit in the pentameric 

receptor contributing to the pore-forming domain of the pentameric receptor (Fig. 1.3 

B) (Albuquerque et al., 2009). The individual muscle type nAChR subunits were 

named in accordance to the speed of their migration in protein gels, with the ! 

subunit migrating the fastest and the $ subunit migrating the slowest (Klett et al., 

1973; Karlin, 1974; Heidmann and Changeux, 1978).
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Figure 1.3: Muscle-type nAChR subunits and subtypes. (A) Schematic 
representation of an individual nAChR subunit protein. The amino and carboxy 
terminals of the protein are labeled N and C, respectively, with the transmembrane 
segments labeled M1 – M4. (B) Schematic representation of the pentameric muscle-
type nAChR, with individual subunits depicted as colored cylinders. (C) Subunit 
composition of the muscle-type nAChRs during development (left) and in adulthood 
(right). Individual receptor subunits are represented as colored circles. Diamonds 
located between adjacent receptor subunits represent ligand-binding sites while 
pentagons in the center of each pentamer represent the pore region. 
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Mature muscle nAChR subunits are assembled in the stoichiometric combination of 

!2"#$ early in development and !2"%$ at adulthood (Takai et al., 1985; Mishina et al., 

1986) (Fig. 1.3 B, C). Each receptor has two ACh (ligand) binding sites, which are 

located at the interface of an ! and a non-! subunit (Fig. 1.3 C). The receptor itself 

can occupy three distinct functional states: the resting state, where it has low affinity 

for agonists and the ion channel is closed; the active state, where agonist occupies 

the ligand binding sites and the channel is open, allowing for the flow of ions; and 

finally, the desensitized state, where the channel is closed and the receptor is no 

longer responsive to ligand (Albuquerque et al., 2009). 

 

Muscle type nAChRs are crucial for the transmission of nerve signals to skeletal 

muscle and in turn underlie the molecular machinery responsible for the operation of 

the voluntary and involuntary muscle response (Kandel et al., 2000). Disruption of 

neuronal communication through muscle type nAChRs can result in neuromuscular 

disorders that effect muscle control like Myasthenia Gravis. In Myasthenia Gravis the 

observed decline of the voluntary muscle response is a result of the destruction of 

muscle type nAChRs at the NMJ caused by an abnormal immune response 

(Lindstrom, 2000b). 

 

Neuronal nicotinic acetylcholine receptors 

Evidence for the existence of several functionally distinct classes of nAChRs in 

neuronal tissue was uncovered during early autoradiography experiments that 

compared the binding of [3H] – ACh and [3H] – Nicotine to [3H] - !-Bgtx in rodent and 
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chick brains (Marks and Collins, 1982). These experiments demonstrated that there 

were nAChRs in nervous tissue and that there appeared to be at least two classes of 

neuronal nicotinic receptors, those that were sensitive to !-Bgtx and those that were 

not (Marks and Collins, 1982). Norman and colleagues were the first to purify a 

neuronal nicotinic receptor protein from the chick optic lobe in 1982, using !-Bgtx as 

a ligand (Norman et al., 1982). Whiting and Lindstrom purified the first !-Bgtx 

insensitive receptor from chicken brains in 1986. Purification of the !-Bgtx 

insensitive receptor protein was achieved with affinity chromatography, using a 

monoclonal antibody that recognizes the muscle-type nAChR protein (Whiting and 

Lindstrom, 1986). The !-Bgtx insensitive receptor purified from chick brain had high 

affinity for nicotine, was resistant to desensitization and was comprised of two 

subunits. These results demonstrated the existence of nAChRs in the brain that 

were pharmacologically and functionally distinct from their muscle-type counterparts. 

While performing a low stringency screen of a cDNA library using the muscle-type 

nAChR subunit !, Boulter and colleagues isolated a cDNA clone for a neuronal 

nAChR subunit (Boulter et al., 1986). These experiments set the stage for the 

discovery of an entire family of neuronal nAChR subunit genes in rapid succession 

(Heinemann et al., 1990; Gotti and Clementi, 2004; Gotti et al., 2007; Albuquerque 

et al., 2009). 

 

The neuronal nAChR gene family 

Like the muscle-type receptor subunits, each neuronal nAChR gene encodes a 

protein consisting of an extracellular N-terminus, four transmembrane segments 
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(M1-M4), a variable intracellular loop between the M3 and M4 transmembrane 

segments as well as an extracellular C-terminus (Corringer et al., 2000). Similar to 

what is observed in the muscle receptors, five neuronal nAChR subunits co-

assemble to form ligand-gated channels (Cooper et al., 1991; Brejc et al., 2001). 

However, the diversity of the neuronal nAChR subunit gene family allows for a vast 

array of subunit combinations, with the biophysical and pharmacological properties 

of a given receptor subtype determined by subunit composition (McGehee and Role, 

1995). At present, 12 members of the nAChR subunit gene family exist including 

CHRNA2 – CHRNA10 and CHRNB2 – CHRNB4 (Fig. 1.4) (Dani and Bertrand, 

2007b; Albuquerque et al., 2009). The !2 – !6 subunits can form functional 

receptors in combination with the "2 – "4 subunits while the !7 – !10 subunits are 

capable of forming homomeric nAChRs. Two classes of unique heteromeric 

receptors have been discovered recently, which are assembled with the combination 

of the !9 and !10 subunits (Elgoyhen et al., 2001; Lustig et al., 2001) or the !7 and 

"2 subunits (Liu et al., 2009b). The functional diversity exhibited by the neuronal 

nAChR family is a consequence, in large part, of the differential expression of the 

various subunit genes leading to the incorporation of distinct subunits into mature 

receptors (Albuquerque et al., 2009). Thus, the incorporation of a particular subunit 

into a mature receptor is controlled, at least in part, by the transcriptional regulation 

of the nAChR subunit genes. 
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Figure 1.4: Neuronal nAChR subtypes. Schematic representations of homomeric 
and heteromeric receptor subtypes depicted as groups of colored circles with ligand-
binding sites depicted as yellow diamonds and the pore region depicted as an 
unfilled pentagon. Biophysical characteristics of homomeric and heteromeric nAChR 
subtypes are provided in the center column with primary regions of expression for 
specific subtypes listed in the right most column (Leonard and Bertrand, 2001; Wang 
and Sun, 2005).  
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The function of neuronal nAChRs is determined, in part, by the sub-cellular 

localization of the receptor. nAChRs are located at the soma, where activation 

directly contributes to excitability through the influx of sodium and calcium 

(Pidoplichko et al., 1997), at presynaptic terminals, where they can modulate 

neurotransmitter release (McGehee et al., 1995), and also at postsynaptic terminals, 

where they receive signals from cholinergic neurons (Albuquerque et al., 2009). The 

targeting of nAChRs is regulated by the interaction of cellular trafficking proteins with 

residues in the intracellular loop between the M3 and M4 transmembrane spanning 

domains of individual receptor subunit proteins (Dani and Bertrand, 2007b).  

Characterization of the biophysical and pharmacological properties of nAChRs was 

made possible by the use of heterologous expression systems (McGehee and Role, 

1995). By injecting nAChR mRNA or cRNA into Xenopus oocytes, nAChR subunits 

can be expressed either independently or in combination with other subunits. These 

experiments demonstrated that the !7, !8, and !9 subunits are able to form 

functional homomeric receptors, while other ! subunits require the presence of an 

additional " subunit to form functional receptors (Couturier et al., 1990b; Gerzanich 

et al., 1997). Functional heteromeric nAChRs result from co-expression of CHRNA2 

– CHRNA6 with the CHRNB2 – CHRNB4 nAChR subunit genes (Boulter et al., 

1987; Wada et al., 1988). When activated by agonist, nAChRs allow for the flow of 

monovalent and divalent cations eliciting a rapid inward current that desensitizes 

(Barnard et al., 1982) and is potentiated by calcium ions (Vernino et al., 1992). Most 

high affinity nAChRs in the CNS contain the !4 and "2 subunits while most low 
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affinity receptors are presumably homomeric !7 receptors (Albuquerque et al., 

2009). 

 

The CHRNA5/A3/B4 gene cluster 

Couturier and colleagues were the first to discover the colocalization of the 

CHRNA5, CHRNA3 and CHRNB4 genes in the avian genome. Shortly after, a 

remarkably similar CHRNA5/A3/B4 cluster of homologous genes was discovered in 

the rat genome by Boulter and colleagues (Boulter et al., 1990). It was later 

elucidated that the clustering of these three nAChR subunit genes is conserved 

throughout vertebrates, with similar CHRNA5/A3/B4 clusters found in the mouse 

(Eng et al., 1991) pig (Tammen, 1998) and human genomes (Fig. 1.5) (Raimondi et 

al., 1992). To date, no clustered subunit genes analogous to CHRNA5, CHRNA3 

and CHRNB4 have been identified in the Xenopus, Zebrafish, Drosophila or C. 

elegans genomes (Le Novere and Changeux, 1995; Tsunoyama and Gojobori, 

1998). The conservation at the CHRNA5/A3/B4 locus paired with the observation 

that these genes are co-expressed in a variety of cell types and tissues suggests 

that these subunit genes are coordinately regulated (Gotti et al., 2006; Improgo et 

al., 2010b). Functional characterization of the promoter regions of each of the three 

clustered subunit genes revealed that as expected, several transcription factors act 

to positively influence expression of each of the clustered genes including, Sp1, Sp3, 

Sox10, and SCIP/Tst-1/Oct-6 (Improgo et al., 2010b). 
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Figure 1.5: The CHRNA5/A3/B4 gene cluster. Schematic representation of the 
human CHRNA5/A3/B4 gene cluster. Each gene is drawn to scale with colored 
boxes representing exons and red boxes representing untranslated regions. 
Horizontal black lines represent introns while horizontal gray lines represent 
intragenic regions. Colored arrows indicate the direction of transcription. The 25 
stars below the CHRNA5/A3/B4 locus indicate the position of SNPs linked to either 
to an increased risk of nicotine dependence or lung cancer.  
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Figure 1.6: Transcriptional regulation of the CHRNA5/A3/B4 locus. Coding 
regions of the nAChR subunit genes are represented as colored boxes with arrows 
indicating the direction of transcription. Two transcriptional regulatory elements, the 
intronic repressor in the fifth intron of CHRNA5 (A3I5) and the 3 ! enhancer in the 
CHRNB4 gene, are shown (green and purple boxes, respectively). Horizontal black 
lines depict the non-coding regions of DNA. Transcription factors that regulate 
expression of these genes are depicted as colored circles and are touching each 
other if they directly interact. Circles labeled with a “?” indicate transcription factors 
whose identities have yet to be identified. In the case of Sp1, multiple binding sites 
have been identified in each of the nAChR genes, however, for clarity, the sites are 
represented as a single green circle at each promoter region. 
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However, it is important to note that the expression patterns of the clustered subunit 

genes do not completely overlap, indicating that in addition to the coordinate 

regulation, unique regulatory mechanisms also act to control expression of the 

individual subunit genes (Fig. 1.6). Nicotinic receptors containing !5, !3, and "4 

subunits are the most abundant nAChRs expressed in the peripheral nervous 

system (PNS) (Conroy and Berg, 1995; Improgo et al., 2010b), where they play a 

crucial role in mediating fast synaptic transmission in autonomic ganglia (Rust et al., 

1994; Conroy and Berg, 1995; Flores et al., 1996). They are also expressed 

centrally (Leonard and Bertrand, 2001; Gotti et al., 2007), particularly in the 

habenulo-interpeduncular pathway where they are hypothesized to play a role in 

reward and motivation (Grady et al., 2009).  

 

In Xenopus oocytes, co-expression of rat !3 and "4 nicotinic receptor subunit cRNA 

results in functional receptors that are activated by ACh with an EC50 of 79-180 µM 

and a single channel conductance, #, of 22 pS (McGehee and Role, 1995; Improgo 

et al., 2010b). Interestingly, the !5 subunit fails to form functional receptors when co-

expressed with either the "4 or "2 subunits alone (Boulter et al., 1987; Couturier et 

al., 1990a). However, functional channels are formed if !5 is co-expressed with both 

the !4 and "2 subunits (Ramirez-Latorre et al., 1996) or with both the !3 and "4 

subunits (Wang et al., 1996; Groot-Kormelink et al., 2001). Surprisingly, inclusion of 

the !5 subunit in the !3"4 receptor has little impact on the ACh/nicotine 

concentration-response relationship. However, the !5!3"4 subtype does have an 
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accelerated rate of desensitization when compared to the !3"4 receptor (Wang et 

al., 1996; Wang and Sun, 2005). The !3"4 subtype has an EC50 for ACh that is 

significantly higher than the !4"2 subtype, which has an ACh EC50 of 0.8 µM. 

Cytisine is the most potent agonist at the !3"4 subtype (EC50 of 15 µM) whereas 

nicotine is the most potent agonist at the !4"2 (EC50 of 0.13-0.3 µM) subtype 

(McGehee and Role, 1995; Improgo et al., 2010b).  

 

It has been shown previously that nAChR subtypes in the brain containing the !5, 

!3 and "4 subunits are involved in the pathogenesis of nicotine-induced seizures 

(Wang et al., 2002; Kedmi et al., 2004; Salas et al., 2004b) as well as nicotine-

induced hypolocomotion (Salas et al., 2004b). Specifically, CHRNB4 knock out (KO) 

mice exhibit decreased signs of nicotine withdrawal (Salas et al., 2004a) as well as 

autonomic cardiac and intestinal dysfunction (Wang et al., 2003). CHRNA3 KO mice 

exhibit poor growth, decreased survival, absence of bladder contractility and widely 

dilated pupils (Xu et al., 1999b), whereas CHRNA5 KO mice display altered 

autonomic function and decreased sensitivity to nicotine induced seizures (Salas et 

al., 2003b). Recently, !3- and "4-containing nAChR subtypes in the habenulo-

interpeduncular pathway have been shown to mediate ACh release (Grady et al., 

2009).  

 

A series of candidate gene analyses and genome-wide association studies (GWAS) 

has identified single nucleotide polymorphisms (SNPs) in the chromosomal locus 

encoding the clustered nAChR subunit genes as risk factors for nicotine 
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dependence, lung cancer, chronic obstructive pulmonary disease, alcoholism and 

peripheral arterial disease (Saccone, 2007; Amos, 2008; Berrettini, 2008; Bierut, 

2008; Hung et al., 2008; Schlaepfer, 2008; Stevens et al., 2008; Thorgeirsson, 2008; 

Weiss et al., 2008; Caporaso et al., 2009; Freathy et al., 2009; Saccone et al., 2009; 

Sasaki et al., 2009; Wang et al., 2009b; Wang et al., 2009a). As a result of the 

correlation of lung cancer susceptibility with variability in the clustered subunit 

genes, new attention has been brought to the !5!3"4 subtype shifting the focus 

from the more commonly studied !7 and !4"2 subtypes (Sciamanna et al., 1997; 

Picciotto et al., 1998; Wang et al., 2001; Walters et al., 2006; Breitling et al., 2009; 

Paleari et al., 2009; Sun et al., 2009). 

 

Nicotinic receptors and lung cancer 

A variety of evidence exists indicating that nAChRs play a role in lung 

carcinogenesis (Improgo et al., 2010a). First, nAChRs are expressed in both normal 

and lung cancer cells with several nAChR subunit genes, including CHRNA5, 

CHRNA3 and CHRNAB4, overexpressed in lung cancer (Schuller, 1989; Maneckjee 

and Minna, 1990; Maus et al., 1998; Wang et al., 2001; Song et al., 2003; Lam et al., 

2007; Sartelet et al., 2008; Improgo et al., 2010d). In addition, the !7, !4"2, !3"2, 

and !3"4 nAChR subtypes have been shown to mediate cellular processes involved 

in the pathogenesis of lung cancer (Schuller, 2009). Activation of these receptors 

potentiates the development and progression of lung cancer through several 

different mechanisms. 
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Activation of nAChRs by either nicotine or ACh can enhance cell proliferation. It has 

been shown previously that ACh activates signaling pathways vital for growth and 

differentiation of human epithelial cells (Grando, 2008). Nicotine treatment has been 

shown to initiate a signal cascade that leads to inactivation of cyclins and cyclin-

dependent kinases, disassociation of E2F1 from the retinoblastoma protein, 

activation of proliferative promoters by E2F1 and entry into S-phase (Dasgupta and 

Chellappan, 2006; Egleton et al., 2008). Nicotine also upregulates a wide variety of 

growth factors and their receptors (Sher et al., 1998). 

 

Nicotine can also confer resistance to apoptosis in lung cancer cells (Maneckjee and 

Minna, 1994). Nicotine’s ability to protect cells from apoptosis appears to involve 

several pathways. One such pathway involves activation of the anti-apoptotic protein 

B cell lymphoma gene 2 by protein kinase C! and phospholipase C (Mai et al., 

2003).  Consistently, nicotine also inactivates the proapoptotic functions of the Bax 

and Bad proteins (Jin et al., 2004; Xin and Deng, 2005). 

 

Nicotine also functions as a pro-angiogenic agent, activating angiogenesis through 

the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways 

(Heeschen et al., 2001). Nicotine enhances angiogenesis by promoting endothelial 

cell migration, proliferation, survival, tube formation, and nitric oxide production 

(Cooke and Ghebremariam, 2008). 
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!4-containing nicotinic receptors  

The !4 nAChR subunit was initially identified in 1989 (Duvoisin et al., 1989) in a 

screen of a rat cDNA library. Duvoisin and colleagues were able to demonstrate that 

in Xenopus oocytes, the newly discovered !4 subunit could form functional channels 

with the "2 # "4 subunits. A year later the sequence of the CHRNB4 gene was 

reported for the first time along with CHRNA5 (Boulter et al., 1990). Subsequent 

studies on !4-containing receptors like "3!4 and "5"3!4 revealed that these 

receptors are insensitive to "-Bgtx and display a slower time course of 

desensitization when compared to other receptor subtypes like the "7 homomeric 

receptor (Fig. 1.4) (Couturier et al., 1990a; Role, 1992). Much like the CHRNA5 and 

CHRNA3 subunit genes, the CHRNB4 gene is widely expressed in the PNS with a 

more restricted pattern of expression in the CNS (Gotti and Clementi, 2004). 

CHRNB4 expression is relatively high in trigeminal sensory neurons (Flores et al., 

1996; Liu et al., 1998) as well as the superior cervical, dorsal root, spenopalatine 

and otic ganglia (Mandelzys et al., 1994; Rust et al., 1994; Zoli et al., 1995). 

CHRNB4 is also expressed in the adrenal medulla (Di Angelantonio et al., 2003) 

with lower expression in the retina (Moretti et al., 2004). In the CNS, CHRNB4 

expression is particularly high in the olfactory bulb, pineal gland, medial habenula 

and interpeduncular nucleus (Dineley-Miller and Patrick, 1992; Winzer-Serhan and 

Leslie, 1997; Grady et al., 2009) with lower expression in other thalamic nuclei, the 

cortex, hippocampus, spinal cord, cerebellum and midbrain (Hellstrom-Lindahl et al., 

1998; Quik et al., 2000; Azam et al., 2002; Perry et al., 2002; Keiger et al., 2003; 

Gahring et al., 2004; Turner and Kellar, 2005).



29

As discussed above, the transcription factors Sp1, Sp3, Sox10 and SCIP/Tst-1/Oct-6 

positively impact transcription of the CHRNB4 gene as well as the 

CHRNA5 and CHRNA3 genes (Fig. 1.6). In addition to these factors, 

CHRNB4 expression is also positively regulated by c-Jun (Melnikova and Gardner, 

2001). Transactivation by Sp1, Sp3, c-Jun and Sox10 is abolished when the Sp-

binding site on the CHRNB4 promoter (referred to as a CA box) is mutated. 

Conversely, synergistic activation of the CHRNB4 promoter is observed when Sp1 is 

supplied in concert with Sox10, Sp3 or c-Jun (Melnikova et al., 2000b; Melnikova 

and Gardner, 2001). Co-immunoprecipitation experiments demonstrated that all of 

these factors physically interact (Melnikova et al., 2000a). These findings suggest 

the existence of a positively acting multi-subunit transcriptional regulatory complex 

that assembles on the CHRNB4 promoter (Fig. 1.6). This result is consistent with the 

hypothesis that Sp1 is critical for transcription from the CHRNB4 promoter and likely 

nucleates the regulatory complex that drives expression of CHRNB4. 

 

Two additional transcription factors have been shown to interact with the CHRNB4 

promoter, Pur! and heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Du et 

al., 1997; Du et al., 1998) (Fig. 1.6). These proteins interact with another motif, the 

CT box, located directly upstream of the CA box. hnRNP K is capable of repressing 

Sp factor-mediated transactivation of the CHRNB4 promoter (Du et al., 1998) and 

also physically interacts with Sox10 (Melnikova et al., 2000a). Similar to hnRNP K, 

Pur! is capable of interacting with Sox10 (Melnikova et al., 2000a). Moreover, Pur! 

and hnRNP K themselves physically interact (Melnikova et al., 2000a). These 
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proteins may participate in the multi-subunit complex described above to modulate 

expression of the CHRNB4 gene in the appropriate cellular context. In vitro binding 

experiments demonstrated that each factor binds preferentially to the opposing 

single strand elements of the CT box, suggesting that some local DNA helix 

unwinding may occur (Krecic and Swanson, 1999). Interestingly, Pur! and hnRNP K 

have been shown to function together to negatively impact transcription of genes in 

other systems and the same may be occurring at the CHRNB4 promoter (Fig. 1.7) 

(Da Silva et al., 2002). 

 

While the molecular machinery responsible for the incorporation of a particular 

subunit into a mature nAChR is poorly understood, regulation at the level of 

transcription undoubtedly plays an important role. The transcriptional regulatory 

mechanisms controlling expression of the CHRNB4 gene are not completely 

understood, however, and therefore served as the focus of my studies. 

 

I have focused on investigating the transcriptional regulation of the CHRNB4 gene 

both in vitro and in vivo. Specifically, I demonstrated that a set of transcription 

factors shown previously to enhance CHRNB4 promoter activity in vitro are capable 

of interacting with the CHRNB4 promoter in the context of native chromatin using 

both neuronal-like cell lines and rodent brain tissue. In addition, I have developed a 

transgenic animal model to investigate the importance of the CHRNB4 promoter CA 

box regulatory element in vivo.  
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Figure 1.7: Protein-DNA interaction at the CHRNB4 promoter CT box. 
Nucleotide sequences of the CT and CA box are represented as colored boxes with 
each base represented as either green (A), pink (T), yellow (C) or blue (G) boxes. 
The transcription factors hnRNP K (blue) and Pur! (green) are depicted as colored 
shapes interacting with single stranded regions of the CT box shown. Nucleotide 
sequences that physically interact with either hnRNP K or Pur! in vitro have been 
depicted as colored boxes orientated towards the hnRNP K or Pur! proteins. 
Because hnRNP K and Pur! physically interact, they have been depicted here as 
interlocking shapes.   
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Using this model system I was able to demonstrate that the CA box regulatory 

element is critical for CHRNB4 promoter activity in vivo and that mutation of this 

sequence results in decreased interaction of the regulatory factor Sp1 with the 

CHRNB4 promoter. Finally, I have investigated the role that the transcription factors 

hnRNP K and Pur! play at the CHRNB4 promoter.  
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CHAPTER II: MATERIALS AND METHODS 

 

Cell culture and differentiation  

PC12 cells (Greene and Tischler, 1976) were maintained in Dulbecco’s modified 

Eagle’s medium (Cellgro) containing 10% fetal bovine serum (GIBCO) and 5% heat 

inactivated horse serum (GIBCO). PC12 cells were differentiated for 72 hours with 

nerve growth factor (NGF) (Millipore) as described previously (Hu et al., 1994). 

OBL21 cells (Ryder et al., 1990) were grown in Dulbecco’s modified Eagle’s medium 

(Cellgro) containing 10% fetal bovine serum (GIBCO). Neuro 2A cells (Olmsted et 

al., 1970) were maintained in minimum essential medium (GIBCO) containing 10% 

fetal bovine serum (GIBCO). SN17 cells (Hammond et al., 1990) were maintained in 

Dulbecco’s modified Eagle’s medium (Cellgro) containing 10% fetal bovine serum 

(GIBCO). 

 

ChIP 

The ChIP experiment was originally designed to map the location of post-

translational modified histone proteins (Kuo and Allis, 1999). This technique has 

since been adapted to investigate the interaction of transcription factor proteins with 

a locus or DNA region of interest (Collas, 2010). The ChIP assay allows for the 

investigation of protein-DNA interaction in the native chromatin environment. This 

technique provides more physiologically relevant data when compared to 

electrophoretic mobility shift assays where nuclear extracts are incubated with short-

labeled DNA oligonucleotides. In electrophoretic mobility shift assays, DNA is not 
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associated with histone proteins or organized into higher order chromatin structures. 

This is a considerable advantage of the ChIP technique, as it is well known that 

chromatin structure can profoundly impact protein-DNA interaction and transcription 

(Li et al., 2007). 

 

ChIP Protocol: ChIP experiments performed on cells grown in culture were carried 

out using a modified version of the ChIP protocol provided in the Millipore ChIP 

assay kit, catalogue #17-295. Cells used for these experiments were grown in 150 

cm culture dishes (Corning) to a confluency of ~80%, yielding approximately 107 

cells. Proteins were cross-linked to DNA by adding formaldehyde directly to culture 

medium to a final concentration of 1% and incubating for 10 minutes at 37°C. Cross-

linking was then stopped by the addition of glycine to a final concentration of 0.125 

M, followed by a 10-minute room temperature incubation. Culture media was 

aspirated off and cells were then washed twice with ice cold PBS + protease 

inhibitors (1 µg/ml aprotinin, 1 µg/ml pepstatin A and 1 mM phenylmethylsulfonyl 

fluoride (Sigma)). Cells were scraped into ice-cold PBS containing protease 

inhibitors and collected by centrifugation for 4 minutes at 2,000 rpm at 4ºC. The 

resulting pellet was then resuspended again in ice cold PBS containing protease 

inhibitors and placed on ice. Cell number was determined using a hemocytometer in 

order to ensure that each individual ChIP was performed using approximately 106 

cells as a source of chromatin. Cells were processed in batches of 107 cells, enough 

for 10 individual ChIP reactions. After quantification and any necessary adjustments, 

cells were collected again by centrifugation for 4 minutes at 2,000 rpm at 4ºC and 
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supernatant was removed. The resulting pellet was re-suspended in 2 mls SDS lysis 

buffer (1%SDS, 10 mM EDTA 50 mM Tris-HCL, pH 8.1) with protease inhibitors in a 

pre-cooled 15 ml conical tube (Fisher). Once in SDS lysis buffer, cells were allowed 

to incubate on ice for 10 minutes. Cells were then sonicated in the 15 ml conical 

tube, which was kept in an ice water bath throughout the sonication protocol. The 

intensity and duration of the sonication was optimized in order to shear chromatin 

into an average size of 500 base pairs. After sonication, fragmented chromatin was 

transferred to a pre-cooled microfuge tubes and centrifuged at 13,000 rpm for 10 

minutes at 4°C, in order to eliminate cellular debris. The supernatant was carefully 

removed from the debris pellet and then transferred to a fresh pre-cooled 15 ml 

conical tube stored on ice. Chromatin was then diluted 10 fold in ChIP dilution buffer 

(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCL, pH 8.11, 67 mM 

NaCl), containing protease inhibitors. At this point, the Input unprecipitated control 

sample is set aside. Diluted chromatin was pre-cleared by adding 80 µl salmon 

sperm DNA/protein A-agarose beads (Millipore catalog #16-157C) for each 

individual ChIP reaction (800 µl was used for a batch of 10 individual ChIPs) and 

incubating for 30 minutes with rotation at 4ºC. After the 30-minute incubation, 

salmon sperm DNA/protein A-agarose beads were spun down for 2 minutes at 1,500 

rpm at 4ºC and the cleared supernatant was transferred to a fresh pre-cooled conical 

tube on ice. Diluted chromatin samples were then aliquoted to pre-cooled siliconized 

IP tubes (Fisher) kept on ice. Each individual ChIP reaction was performed using 2 

ml of diluted chromatin. 5 µg of the desired antibody was then added to each 

individual ChIP reaction and samples were incubated at 4ºC with rotation, overnight. 
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The following morning, 60 µl of salmon sperm DNA/protein A-agarose beads were 

added to each IP. ChIP samples were allowed to incubate with salmon sperm 

DNA/protein A-agarose beads for 1 hour at 4ºC with rotation, in order to allow 

protein A / antibody / transcription factor / DNA complexes to form. Salmon sperm 

DNA/protein A-agarose beads were collected by centrifugation at 1000 rpm at 4ºC 

for 1 minute. Following centrifugation the supernatant was carefully removed and 

discarded. Protein A / antibody / transcription factor / DNA complexes were washed 

with 1 ml of a low salt buffer (0.1%SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, 

pH8.1, 150 mM NaCl) for 5 minutes at 4ºC with rotation. Salmon sperm DNA/protein 

A-agarose beads were the collected by centrifugation at 1000 rpm at 4ºC for 1 

minute and supernatant was carefully removed and discarded. Additional washes 

were carried out in the same manner for high salt (0.1% SDS, 1% Triton X-100, 2 

mM EDTA, 20 mM Tris, pH 8.1, 500 mM NaCl), lithium chloride (1% IGEPAL – CA 

630, 1% Deoxycholic acid, 1 mM EDTA, 10 mM Tris, pH 8, 0.25 M LiCl) and TE (10 

mM Tris, pH 8, 1 mM EDTA) wash buffers. After the final wash step, beads were 

collected by centrifugation at 1,000 rpm at 4ºC for 1 minute a final time and 

supernatant was carefully removed. The salmon sperm DNA/protein A-agarose 

beads were then eluted by adding 400 µl of elution buffer (0.1 M NaCHO3, 1% SDS 

– must be prepared fresh) to each ChIP sample. After briefly vortexing, samples 

were incubated at room temperature for 30 minutes, with rotation. Salmon sperm 

DNA/protein A-agarose beads were then collected by centrifugation at 1,000 rpm for 

1 minute at room temperature. The resulting supernatant was transferred to freshly 

labeled tubes and the eluted beads were discarded. 8 µl of 5 M NaCl was added to 
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each eluted ChIP reaction and samples were incubated at 65ºC for 4 hours in order 

to reverse protein-DNA crosslinking. After the 4-hour incubation at 65ºC 40 µl of 10X 

Poteinase K buffer (2%SDS, 1 M Tris-HCL, pH 8.0, 50 mM EDTA, 2 M NaCl) and 2 

µl of a 10 mg / ml proteinase K stock (Sigma) was added to each individual ChIP 

sample. Samples were then incubated at 45ºC for 2 hours in order to digest protein. 

Following proteinase K treatment, DNA was isolated with phenol:chloroform 

extraction, followed by ethanol precipitation. The resulting ChIP-derived DNA was 

then used as template for conventional or quantitative real-time PCR (qRT-PCR). 

 

ChIP experiments using brain tissue as a source of chromatin were performed using 

a modified version of the protocol discussed above. Rodent brain tissue was ground 

into a powder using a mortar and pestle (Coors) cooled with liquid nitrogen, on dry 

ice. Approximately 100 mg of brain tissue was used for each individual ChIP. Once 

ground to a powder, 1 g of brain tissue (enough for one experiment with 10 

individual ChIPs) was triturated in 4 mls PBS with 1% formaldehyde. Cells were 

incubated in PBS + formaldehyde for 10 minutes in a 37°C water bath. Cross-linking 

was then stopped by the addition of glycine to a final concentration of 0.125 M, 

followed by a 10-minute room temperature incubation with rotation. After the 10-

minute incubation, tissue slurry was transferred to 2 pre-cooled 2ml dounce 

homogenizers on ice (Kontes Glass Co.). The brain tissue was homogenized with 

10-15 pestle strokes using the “tight” pestle. Cells were then transferred to 2, 2 ml 

pre-cooled tubes and collected by centrifugation at 1,500 rpm for 5 minutes at 4°C. 

Supernatant was removed and cells and each pellet was washed in 1 ml ice-cold 
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PBS containing protease inhibitors. Cells were then collected again by centrifugation 

at 1,500 rpm for 5 minutes at 4°C and were subsequently washed an additional time. 

The resulting pellets were resuspended in 1 ml of SDS lysis buffer (1%SDS, 10 mM 

EDTA 50 mM Tris-HCL, pH 8.1) containing protease inhibitors and then combined to 

reach a final volume of 2 mls. Brain tissue ChIPs were carried out as described 

above for the remainder of the procedure. 

 

Cell lines used in the ChIP assay 

 

PC12 Cells: The rat pheochromocytoma cell line PC12 is a widely used model 

system for NGF-induced neuronal differentiation (Greene and Tischler, 1976). Upon 

NGF treatment these cells extend long neurite-like processes and acquire many of 

the biochemical and physiological properties associated with autonomic neurons 

(Rogers et al., 1992). NGF treated PC12 cells exhibit increased expression levels of 

several nAChR subunit genes including the CHRNB4 gene (Rogers et al., 1992). 

PC12 cells treated with NGF were used in the ChIP experiments described below 

due to the fact that these cells will be actively transcribing the CHRNB4 gene. In 

these cells, it is most likely that the factors that act to control transcription of this 

gene will be present at the CHRNB4 promoter.  

 

OBL21 Cells: The OBL21 cell line was produced by retroviral vector-mediated 

transduction of the avian myc oncogene. Mitotic progenitor cells of postnatal mouse 

olfactory bulb were infected in order to produce a clonal cell line that exhibits a 
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stable neuronal phenotype (Ryder et al., 1990). OBL21 cells extend long processes 

and display growth cones. These cells also express the 150 kD neurofilament 

protein (a common neuronal marker (Zopf et al., 1987)) as well as voltage-gated 

potassium channels, but do not express voltage-gated sodium channels (Ryder et 

al., 1990). OBL21 cells were used in ChIP assays because of their neuronal-like 

morphology and also due to the fact that the CHNRB4 gene is expressed in the 

olfactory bulb (Dineley-Miller and Patrick, 1992; Winzer-Serhan and Leslie, 1997). 

 

Neuro 2A Cells: The mouse neuroblastoma cell line Neuro 2A was derived from a 

spontaneously occurring neuroblastoma in an albino mouse strain (Olmsted et al., 

1970). These cells produce a microtubular protein, which is believed to play a role in 

the contractile system giving axoplasmic flow in nerve cells. When cultured these 

cell rapidly adhere to substrate and extend branching processes, giving them a 

neuronal-like morphology. Neuro 2A cells were used in ChIP assays because of 

their neuronal-like morphology and also because they express relatively high levels 

of several nAChR subunits including the CHRNA5, CHRNA3 and CHRNB4 genes.  

 

Antibodies used in the ChIP assay 

Anti-acetyl Histone protein H4 (Millipore – 06-866): rabbit polyclonal antiserum 

raised against amino acids 2-19 of Tetrahymena histone H4. 5 µl of H4 antibody was 

used in each H4 ChIP positive control reaction. 

Normal Rabbit IgG: (Santa Cruz Biotechnology – sc-2027) 

Normal Mouse IgG: (Santa Cruz Biotechnology – sc-2025) 
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Sp1 (PEP 2) X (Santa Cruz Biotechnology – sc-59X): an affinity purified rabbit 

polyclonal antibody raised against amino acids 528-546 mapping within an internal 

region of Sp1 of rat origin.  

Sp3 (D-20) X Santa Cruz Biotechnology – sc-644X) an affinity purified rabbit 

polyclonal antibody raised against a peptide within the C-terminus of Sp3 of human 

origin. 

Sox10 (H-140) X (Santa Cruz Biotechnology – sc-48824X) a rabbit polyclonal 

antibody raised against amino acids 311-450 mapping near the C-terminus of Sox-

10 of human origin. 

c-Jun (N) X (Santa Cruz Biotechnology – sc-45X): an affinity purified rabbit 

polyclonal antibody raised against a peptide within the N-terminus of c-Jun of mouse 

origin. 

hnRNP K (H-300) (Santa Cruz Biotechnology – sc-25373): an affinity purified 

rabbit polyclonal antibody raised against amino acids 1-300 of hnRNP K of human 

origin.  

Pur!  (Abcam – Ab79936):  an affinity purified rabbit polyclonal antibody raised 

against a peptide containing residues 1-100 of Pur! of human origin. 

 

Amplification of ChIP-derived DNA 

Conventional PCR 

ChIPs performed on cells grown in culture: PC12 cell ChIP-derived DNA was used 

as template in PCRs with the following primers designed to recognize a segment of 

the rat CHRNB4 promoter containing the CT and CA boxes, 5"-



41

TAAGCTGCCTCGGGTGAACTAAGA-3!, 5!-TGTCTGGGGGAACCTGTGGCTAT-3!. 

Neuro 2A and OBL21 ChIP-derived DNA was used as template in PCRs with the 

following primers designed to recognize a segment of the mouse CHRNB4 promoter 

containing the CT and CA boxes 5!- TTGGGTAAGCCAGGCTAAGA-3!, 5!- 

GGTCCCGAGACTTTCTCACA-3!. Both mouse and rat ChIP-derived PCR products 

were sequenced to confirm the specificity of the PCR reaction. Following 

amplification, PCR products were electrophoresed through a 2% agarose gel. 

 

Fetal and adult rat brain ChIPs: Rat brain ChIP-derived DNA was used as template 

in PCRs with the rat primers discussed above, designed to recognize a segment of 

the rat CHRNB4 promoter containing the CT and CA boxes, 5!-

TAAGCTGCCTCGGGTGAACTAAGA-3!, 5!-TGTCTGGGGGAACCTGTGGCTAT-3!. 

Following amplification, PCR products were electrophoresed through a 2% agarose 

gel. 

 

CA box mutant transgenic brain tissue ChIPs: Each ChIP-derived DNA sample was 

used in PCR with the rat primers discussed above designed to amplify a segment of 

the rat mutant transgenic CHRNB4 promoter, 5!-

TAAGCTGCCTCGGGTGAACTAAGA-3!, 5!-TGTCTGGGGGAACCTGTGGCTAT-3!.  

The same ChIP-derived DNA was also used as template in a separate set of 

reactions using the mouse primers discussed above, which are designed to amplify 

a segment of the endogenous wild type mouse CHRNB4 promoter, 5!- 

TTGGGTAAGCCAGGCTAAGA-3!, 5!- GGTCCCGAGACTTTCTCACA-3!. Following 
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amplification, PCR products were electrophoresed through a 2% agarose gel. 

Densitometry values for ChIP-DNA derived PCR products were obtained using the 

Ultra-Violet Products EpiChemi3 Darkroom imaging system and UVP analysis 

software (UVP). Densitometry values obtained for each ChIP reaction were 

normalized to the corresponding value obtained for the Input control sample, in order 

correct for differences in starting material. Student’s t-test was used for statistical 

analysis. 

 

qRT-PCR 

Quantification of CHRNB4 promoter fragment enrichment in OBL21, PC12 and 

Neuro 2A ChIP-derived DNA samples was performed using the absolute 

quantification method (Chini et al., 2007) using SYBR green supermix with ROX 

(BioRad). Serial dilutions of a plasmid containing a fragment of either the rat (used 

for PC12 ChIPs) or mouse (used for the OBL21 and Neuro 2A ChIPs) CHRNB4 

promoter were used to generate a standard curve for the quantification of the ChIP-

derived DNA samples. ChIP-derived DNA from the rat PC12 cell line was amplified 

using the primers discussed above designed to recognize a segment of the rat 

CHRNB4 promoter containing the CT and CA boxes, 5!-

TAAGCTGCCTCGGGTGAACTAAGA-3!, 5!-TGTCTGGGGGAACCTGTGGCTAT-3!. 

ChIP-derived DNA from the mouse OBL21 and Neuro 2A cells were amplified using 

the primers discussed above, designed to recognize a segment of the mouse 

CHRNB4 promoter, 5!- TTGGGTAAGCCAGGCTAAGA-3!, 5!- 

GGTCCCGAGACTTTCTCACA-3!. Each ChIP-derived DNA sample was run in 
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triplicate and values obtained for each ChIP were normalized to the value obtained 

for the Input ChIP positive control (a 2% sample of un-precipitated DNA) in order to 

control for differences in starting material. Data from these experiments are 

presented as a percentage of the value obtained for the Input control or % Input.  

 

Construction of the mutant CHRNB4 promoter / lacZ transgene 

The 2,346-base pair SacI/HindIII fragment of the rat CHRNB4 gene promoter was 

excised from the pSGB4SH construct (Bruschweiler-Li et al., 2010) and used as the 

template for mutagenic PCR. For mutagenesis, the primers were designed to make 

3 base pair substitutions in the CA box within the context of the 2.3-kb promoter 

fragment. After mutagenesis, the resulting fragment was ligated back into the pSG-

MAR backbone in order to generate the pSGMutB4SH construct. The SacI/HindIII 

fragment in the resulting construct was sequenced in order to ensure that only the 

expected mutations were made (Genewiz, CA) (Fig. 4.3). 

 

Determination of transgene copy number 

Transgene copy number of the mutant transgenic lines was determined using 

absolute quantification-based real-time PCR (Yuan et al., 2007). PCR reactions 

were performed with primers designed to amplify a fragment of the lacZ coding 

sequence present in the CHRNB4 promoter / lacZ transgene. The sequence of the 

upper strand primer was 5 !- GATTTCCATGTTGCCACTCGCTTTA-3 ! while that of 

the lower strand primer was 5 !- TTCAGCAGCAGCAGACCATTTTCAA-3 !. All PCR 

reactions were set up in triplicate and included 100 ng of genomic DNA as template. 
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Three individuals from each founder line were used to determine copy number. Two 

positive control samples of known copy number (a generous gift from Ricardo 

Medina, University of Massachusetts Medical School) were used in this analysis. 

These control samples were isolated from transgenic animals that contain a targeted 

lacZ coding sequence. One of these animals has 1 copy of the lacZ transgene and 

the other has 2 copies. The value obtained for the single copy positive control 

sample was set as 1 in each experiment. This value was used to estimate the copy 

number for all other samples including the control sample with 2 copies. In order to 

determine copy number for our 6 mutant CHRNB4 / lacZ transgenic lines, 3 DNA 

samples from each line were run in qRT-PCR experiments. The quantities derived 

from the standard curve for each set of 3 animals were averaged and then divided 

by the value for the 1-copy positive control. 

 

Generation of transgenic mice 

pSGMutB4SH was digested with NotI to release the mutated CHRNB4 / lacZ 

transgene.  Following agarose gel electrophoresis, the transgene fragment was 

excised and the DNA was extracted from the gel using a QIAquick Gel Extraction Kit 

(QIAGEN). The purified DNA was injected into pronuclei followed by implantation 

into pseudopregnant females.  The C57BL/6 x SJL F2 hybrid mouse strain was used 

for all transgenic experiments. Transgenic founders were identified by PCR.  

Founders were mated with C57BL/6 x SJL F2 hybrid mice to establish transgenic 

lines. Adequate measures were taken to minimize pain and discomfort to the 

animals. All procedures were conducted in accordance with the rules of the 
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Institutional Animal Care and Use Committee of the University of Massachusetts 

Medical School. 

 

Histochemical analysis of transgenic mice 

Two ages of transgenic mice were studied: ED18.5 and PD30. The embryonic time 

point was selected due to the fact that it is several days after the initiation of 

CHRNB4 expression (Zoli et al., 1995). The postnatal time point was selected in 

order to accurately compare the expression patterns of our reporter gene to previous 

in situ hybridization studies that investigated CHRNB4 expression in mice at this 

time point (Winzer-Serhan and Leslie, 1997). Mice were anesthetized with 

pentobarbital and perfused transcardially with cold 0.1 M sodium phosphate buffer/2 

mM MgCl2 followed by fixative (cold 4% paraformaldehyde). Tissues were then 

dissected and post-fixed for 5-6 hours (ED18.5) or 4 hours (PD30). Fixed tissues 

were transferred to 30% sucrose/2 mM MgCl2, in 1X PBS and incubated at 4°C 

overnight. Tissues were embedded in Tissue-Tek (Miles) and quick frozen on dry 

ice. If not used immediately, the samples were stored at -80°C. Sectioning was done 

on a Leica CM3050S cryostat at -28°C generating either 14 µm (ED18.5) or 25 µm 

(PD30) thick sections that were transferred directly onto Superfrost glass slides 

(Fisher). Slides were air-dried at room temperature, washed with sodium phosphate 

buffer and then incubated overnight at 37°C with !-gal staining solution (0.1 M 

NaHPO4, 0.1 M NaH2PO4, 2 mM MgCl2, 0.1% sodium deoxycholate, 0.02% NP-40, 

10 mM K3(Fe)CN6, 10 mM K4(Fe)CN6, 1 mg/ml X-gal). In order to minimize any 

variability in the !-Gal staining results, sections from mutant transgenic lines and the 
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corresponding WT transgenic and non-transgenic lines were stained at the same 

time and in the same batch of staining solution. Two animals from each transgenic 

founder line were studied in depth. Following !-gal staining, slides were washed with 

1X PBS and incubated in distilled water either for 1 h (ED18.5) or overnight (PD30).  

Slides were then counter-stained with Neutral Red (1% w/v in 37 mM sodium 

acetate), dehydrated through a graded series of ethanol solutions (50%, 70%, 90% 

and 100%) and cleared with xylene. The slides were air-dried overnight at room 

temperature in a fume hood followed by the application of cover slips. Microscopy 

was done using a Zeiss Axiovert 200M microscope with a high resolution Retiga 

1300R CCD camera and Slidebook image analysis software. Anatomical analysis 

was done with the aid of the Paxinos and Franklin mouse brain atlas (Franklin and 

Paxinos, 2001) and the Kaufman atlas of mouse development (Kaufman, 1998). 

 

Northern blot analysis 

Expression of Sox10 mRNA in the OBL21 cell line was determined by Northern blot 

analysis as previously described (Fanger et al., 1995) using a radioactively labeled 

Sox10 cDNA. 

 

Quantification of gene expression using qRT-PCR 

Quantification of hnRNP K, Pur", CHRNA5, CHRNA3 and CHRNB4 gene 

expression in OBL21, PC12 and Neuro 2A cells was performed using the -!CT 

relative quantification method (Fernandez et al., 2003) with an ABI 7500 Real Time 
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PCR System. In these experiments, expression of a gene of interest is expressed 

relative to the expression level of the housekeeping gene !2-microglobulin (!2M). 

 

Quantification of gene expression in the siRNA experiments was performed using 

the 2-!!CT relative quantification method (Livak and Schmittgen, 2001). In these 

experiments, !2M was used as the endogenous control to quantify gene expression, 

while the negative control siRNA treated cells are used as a calibrator. In each set of 

experiments, total RNA was isolated from cells using the RNeasy kit (Qiagen). 

cDNAs were generated using the RETROscript kit (Ambion). Each of the three 

clustered nAChR subunit genes along with hnRNP K, Pur", !2M and glyceraldehyde 

3-phospate dehydrogenase (GAPDH) were amplified using TaqMan ® probes (ABI). 

 

Transient Transfections 

Neuro 2A or SN17 cells were transfected using Lipofectamine 2000 (Invitrogen) 

according to the manufacturers instructions. Cells were transfected with either the 

WT or mutant construct and a luciferase expression construct, pGL-Promoter, in 

which the SV40 promoter drives expression of the firefly luciferase gene. (Promega). 

These cells were allowed to incubate in transfection medium for 2 days and then 

harvested and assayed for !-gal (Galacto-Star, Applied Biosystems) and luciferase 

(Luciferase Assay System, Promega) activities in triplicate using a Lumimark 

microplate luminometer (Bio-Rad).  
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To correct for differences in transfection efficiencies between dishes, the !-gal 

activity in each sample was normalized to the luciferase activity in that same sample. 

The Student’s t-test was used for statistical analysis. 

 

Silencer select ® siRNAs specific for hnRNP K, Pur" or a negative control siRNA 

(ABI) were transfected into Neuro 2A cells at a final concentration of 5 nM. siRNA 

was delivered to Neuro 2A cells using Lipofectamine 2000 (Invitrogen). 

 

Western blot analysis 

Expression of Sox10 protein in OBL21 cells was determined by Western blot 

analysis as described previously (Scofield et al., 2008). Anti-Sox10 antibody (Santa 

Cruz Biotechnology - sc-48824) was used at a dilution of 1: 200.  

 

hnRNP K, Pur", nAChR "3, "5, !4, !-Actin and !2M protein levels in siRNA treated 

Neuro 2A cells were also determined by Western blot analysis. Proteins from siRNA 

treated cells were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) then electrophoretically transferred to nitrocellulose 

membranes. The resulting membranes were probed with anti-hnRNP K, 

Pur", nAChR "3, "5, !4, !-Actin or !2M antibodies. Signal intensities were 

measured following chemiluminescent detection. Values for hnRNP K, Pur", nAChR 

subunits "3 "5 or !4 were normalized to the corresponding value obtained for either 

!2m or !-Actin, in order to correct for differences in the amount of lysate loaded into 

each well. In siRNA western experiments, negative control siRNA and either hnRNP 
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K or Pur! siRNA treated cell lysates were run on the same gels in order to more 

accurately quantify any reduction in protein levels. The anti"nAChR !3 (Santa Cruz 

Biotechnology – sc5590), anti-nAChR !5 (Abcam – ab41173), anti-nAChR #4 (R&D 

antibodies – As-5656S), anti-hnRNP K antibody (Santa Cruz Biotechnology - sc-

25373) and anti-Pur! antibody (Abcam – Ab79936) were used at a dilution of 1:400, 

whereas the anti-#-Actin antibody (Sigma – A2228), and anti-#2m antibody (Santa 

Cruz Biotechnology – sc-51509) were used at a dilution of 1:5000.  Image 

acquisition and analysis were performed using a BioRad VersaDoc system and 

software.
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CHAPTER III: PROTEIN-DNA INTERACTION AT THE CHRNB4 PROMOTER CA 

BOX 

 

Disclaimer: I performed all of the experiments described in this chapter with the 

exception of the Northern and Western blots shown in Figure 3.3 (OBL21 cells 

express high levels of Sox10 mRNA and protein), which were performed by 

Zhongming Mou.  

 

Abstract 

nAChRs are involved in a plethora of fundamental biological processes ranging from 

muscle contraction to the formation of memories. These receptors are pentameric 

proteins whose subunits are encoded by distinct genes, with the biophysical 

properties of nAChRs governed by subunit composition. The incorporation of a 

particular subunit into a mature receptor is governed in part by the cell-type specific 

transcriptional regulation of each subunit gene. Here, using the ChIP assay, I report 

the interaction of Sp1, Sp3, Sox10 and c-Jun with the CHRNB4 promoter in 

neuronal-like cell lines as well as rodent brain tissue. These results are in agreement 

with previous data from our lab demonstrating that these factors functionally interact 

with the CHRNB4 promoter in vitro. Taken together, these data strongly suggest that 

Sp1, Sp3, Sox10 and c-Jun regulate expression of the CHRNB4 subunit gene in the 

mammalian brain. 
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Introduction  

Neuronal nAChRs play an essential role in an array of physiological processes 

including learning, memory, and attention (Leonard and Bertrand, 2001; Gotti and 

Clementi, 2004; Albuquerque et al., 2009). The subunit composition of a particular 

nAChR is governed, at least in part, by the transcriptional regulation of individual 

subunit genes. Our laboratory has had a long-standing interest in the transcripitional 

mechanisms underlying expression of the CHRNA/A3/B4 subunit genes. The three 

nAChR subunits encoded by these genes makeup the predominant nicotinic 

receptor subtype expressed in the peripheral nervous system (PNS) (Leonard and 

Bertrand, 2001). Recently, GWAS studies have linked variability in the 

CHRNA5/A3/B4 locus to an increased risk of nicotine dependence and lung cancer 

(Greenbaum and Lerer, 2009; Improgo et al., 2010c).   

 

As only a small subset of neurons in the CNS express the CHRNB4 gene (Dineley-

Miller and Patrick, 1992; Zoli et al., 1995; Gahring et al., 2004) it is likely that 

receptors including this subunit play an important role in mediating cholinergic 

singaling in and around these brain regions (Duvoisin et al., 1989; Gahring et al., 

2004). Studies done using CHRNB4 KO animals have demonstrated that the !4 

subunit plays a critical role in the molecular mechanism underlying nicotine induced 

withdrawal (Salas et al., 2004a). Furthermore, blockade of "3!4 nAChRs results in a 

reduction of opioid and stimulant self-administration, suggesting that nAChRs that 

contain the !4 subunit may be involved in mediating withdrawal syndromes elicited 

by other drugs of abuse (Glick et al., 2002).  
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Gaining a better understanding of the transcriptional regulation of the CHRNB4 gene 

would contribute not only to a more complete understanding of cholinergic signaling 

in the brain, but also nicotine addiction and withdrawal. Here, I focus on elucidating 

the interaction of transcription factors with the CHRNB4 gene promoter in the 

chromatin environment. 

 

Previous work from our laboratory has identified a 226-base pair segment of DNA in 

the 5´-flanking region of the CHRNB4 gene capable of driving luciferase expression 

in a cell type specific manner (Hu et al., 1994; Liu et al., 1999). Deletional analysis 

led to the identification of a unique regulatory element, referred to as a CA box (Fig. 

3.1), located upstream of the CHRNB4 initiator methionine. Interestingly, a C – T 

mutation of a similar CA box regulatory element located in the ! globin gene 

promoter resulted in a 50% reduction in promoter activity (Kulozik et al., 1991). By 

introducing similar mutations to the CHRNB4 promoter CA box, we have previously 

shown that this regulatory element is critical for luciferase expression from the 

CHRNB4 promoter in neuronal-like cell lines (Hu et al., 1994). Using electrophoretic 

mobility shift assays we also previously showed that the transcription factors Sp1 

(Bigger et al., 1996; Bigger et al., 1997), Sp3 (Bigger et al., 1997), and Sox10 (Liu et 

al., 1999) bind to the CA box in vitro. In addition, each of these factors is capable of 

transactivating expression of a luciferase reporter gene driven by the CHRNB4 

promoter, as is the transcription factor c-Jun (Bigger et al., 1997; Liu et al., 1999; 

Melnikova and Gardner, 2001). 
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Figure 3.1: The CT and CA box regulatory elements of the CHRNB4 gene 
promoter. The CHRNB4 gene is depicted in green with the arrow inside denoting 
the direction of transcription. Nucleotide positions of the SacI, FokI, and HindIII sites 
are shown relative to the major transcription initiation site of the CHRNB4 gene 
indicated by the bent arrow. The CT and CA boxes are shown in grey and white, 
respectively with their nucleotide sequences shown below the schematic 
representation. 



54

Interestingly, transfection of c-Fos had no impact on CHRNB4 promoter activity and 

there is no consensus AP-1 (c-Jun and c-Fos heterodimer binding site) site in the 

CHRNB4 promoter. Co-immunoprecipitation studies have demonstrated that Sp1 

and Sp3 (Bigger et al., 1997), as well as Sox10 and the Sp factors (Melnikova et al., 

2000b; Melnikova et al., 2000a), physically interact. Furthermore, transient 

transfections have demonstrated that these factors transactivate the CHRNB4 

promoter synergistically when co-transfected into neuronal-like cell lines (Bigger et 

al., 1997; Melnikova et al., 2000b). Similarly, Sp1 and c-Jun also synergistically 

transactivate the CHRNB4 promoter in transient transfection experiments (Melnikova 

and Gardner, 2001).   

 

Therefore, I hypothesize that Sp1, Sp3, Sox10 and c-Jun act to enhance expression 

of the CHRNB4 gene by interacting with the CHRNB4 promoter CA box, in the 

chromatin environment. To test whether these four regulatory factors interact with 

the CHRNB4 promoter, in neuronal-like cells as well as in the mammalian brain, 

ChIP experiments were performed using the PC12 and OBL21 cell lines as well as 

chromatin isolated from fetal and adult rat brain tissue. These experiments assay for 

the interaction of Sp1, Sp3, Sox10 and c-Jun with the CHRNB4 promoter in the 

chromatin environment. Previous Sp1, Sp3 and Sox10 in vitro binding experiments 

were performed using short DNA oligonucleotides (Bigger et al., 1997; Melnikova et 

al., 2000b), whereas the ChIP assay is performed using fragmented chromatin 

where DNA is associated with histone proteins and may be organized into higher 

order structures. 
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Results  

Sp1, Sp3 and c-Jun interact with the CHRNB4 promoter in differentiated PC12 cells.  

To investigate whether Sp1, Sp3 and c-Jun interact with the CHRNB4 promoter on 

cellular chromatin, ChIP assays were performed using differentiated PC12 cells.  

PCR reactions using ChIP-derived DNA from Sp1, Sp3 and c-Jun 

immunoprecipitations resulted in the amplification of a 207-base pair fragment of the 

rat CHRNB4 promoter containing the CA box (Fig. 3.2). The specificity of antibody-

transcription factor complexes was demonstrated by negative results in ChIP assays 

using either normal mouse IgG or no antibody (Fig. 3.2). An additional negative 

control was performed by substituting water for ChIP-derived DNA at the final PCR 

step (Fig. 3.2). Immunoprecipitation with an anti-histone protein H4 antibody was 

performed as a ChIP positive control, which resulted in the amplification of the 

expected fragment (Fig. 3.2). In addition, a sample of fragmented chromatin prior to 

immunoprecipitation was used as a positive control (referred to as “Input”), which 

also amplified the expected 207-base pair product (Fig. 3.2). Taken together, these 

data indicate that Sp1, Sp3 and c-Jun are present at the endogenous CHRNB4 

promoter in NGF-treated PC12 cells.  

 

Sp1, Sp3, Sox10 and c-Jun interact with the CHRNB4 promoter in the neuronal-like 

cell line OBL21.  

Our laboratory has previously shown that Sox10 binds to and transactivates the 

CHRNB4 promoter in neuronal-like cell lines, but not in non-neuronal cell lines (Liu 

et al., 1999). As PC12 cells do not express Sox10 (data not shown), 
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Figure 3.2: Differentiated PC12 chromatin immunoprecipitation. ChIP-derived 
DNA was used as template for PCR reactions designed to amplify a fragment of the 
rat CHRNB4 promoter containing the CA box. Amplification was observed for both 
histone H4 (“H4”) and input (“Input”) ChIP positive controls. The expected PCR 
product was also produced in Sp1, Sp3 and c-Jun reactions (“Sp1”, “Sp3”, “c-Jun”). 
No amplification was observed when using DNA immunoprecipitated by normal 
mouse IgG (“IgG”), no antibody (“No Ab”) or in no-template PCR reactions (“No 
Template”). The arrow indicates the 200-base pair marker in the 100-base pair 
ladder (“M”). Each ChIP experiment was carried out a minimum of three times. 
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ChIP analyses were extended to another cell line, the mouse olfactory bulb derived 

cell line OBL21 (Ryder et al., 1990), which express high levels of Sox10 mRNA and 

protein (Fig. 3.3 A and B respectively). ChIP experiments with OBL21 cells were 

carried out as described above for PC12 cells. PCR reactions with ChIP derived 

DNA from Sp1, Sp3, Sox10 and c-Jun IPs resulted in the amplification of the 

expected 243-base pair product of the mouse CHRNB4 promoter, containing the CA 

box (Fig. 3.4, lanes 4-7). Once again, the specificity of antibody-transcription factor 

complexes was confirmed by the failure of ChIP-derived DNA from mouse IgG and 

mock immunoprecipitations to produce the CHRNB4 promoter PCR product (Fig. 

3.4, lanes 3 and 8). Finally, H4 and Input ChIP positive controls showed strong 

bands (Fig. 3.4, lanes 2 and 9) and there was no amplification in the no template 

PCR control (Fig. 3.4, lane 10). These data indicate that Sp1, Sp3, Sox10 and c-Jun 

interact with the CHRNB4 promoter in OBL21 cells. 

 

Sp1, Sp3, Sox10 and c-Jun interact with the CHRNB4 promoter in fetal and adult rat 

brain tissue. 

In order to assay for the interaction of Sp1, Sp3, Sox10 and c-Jun with the CHRNB4 

promoter in the most physiologically relevant setting, ChIP experiments were 

performed using chromatin derived from rodent brain tissue. PCR reactions using 

fetal rat brain ChIP-derived DNA as template resulted in the amplification of the 

expected rat CHRNB4 promoter fragment for Sp1, Sp3, Sox10 and c-Jun ChIPs 

(Fig. 3.5 A).  
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Figure 3.3: OBL21 cells express high levels of Sox10 mRNA and protein. (A) 
Northern blot analysis of OBL21 cells revealed relatively high levels of Sox10 
mRNA. Northern analysis was also carried out for !-actin message as a loading 
control. (B) Western blot analysis was carried out on OBL21 cell lysates and showed 
abundant levels of Sox10 protein (MW = 68 kDa). Lines on the left of the blot 
indicate the positions and weights of protein standards.
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Figure 3.4: OBL21 chromatin immunoprecipitation. ChIP-derived DNA was used 
as a template for PCR reactions designed to amplify a 243-base pair product of the 
mouse CHRNB4 promoter. The expected product was observed in PCR reactions 
for both histone H4 (“H4”) and input (“Input”) positive controls. Amplification was also 
observed in Sp1, Sp3, Sox10 and c-Jun immunoprecipitations (“Sp1”, “Sp3”, 
“Sox10”, “c-Jun”). No amplification was seen in PCR reactions using DNA 
immunoprecipitated by normal mouse IgG (“IgG”), no antibody (“No Ab”) or in no-
template PCR reactions (“No Template”). The arrow indicates the 250-base pair 
marker in the 100-base pair ladder (“M”). Each ChIP experiment was carried out a 
minimum of three times.  
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The specificity of antibody-transcription factor complexes in these ChIP experiments 

was demonstrated by failure of ChIP-derived DNA from mouse IgG and no antibody 

immunoprecipitations to produce the expected product (Fig. 3.5 A). These 

experiments indicate that Sp1, Sp3, c-Jun and Sox10 interact with the CHRNB4 

promoter, at the CA box, in fetal rat brain.  

 

I hypothesized that Sp1, Sp3, Sox10 and c-Jun would also interact with the 

CHRNB4 promoter in adult rat brain. In order to test this hypothesis, I performed an 

additional round of ChIP assays using adult rat brain tissue. These experiments 

were performed using whole brain tissue as a source of chromatin for ChIP assays. 

Due to the restricted pattern of CHRNB4 expression, I would expect there to be 

regional differences in ChIP results. However, conventional microdissection 

procedures were not suitable for the removal of the very small brain regions where 

CHRNB4 is highly expressed (e.g., medial habenula and the interpeduncular 

nucleus). Therefore, whole brain homogenate was used. PCR using ChIP DNA from 

Sp1, Sp3, Sox10 and c-Jun immunoprecipitations resulted in the amplification of the 

expected fragment of the rat CHRNB4 promoter (Fig. 3.5 B). No amplification 

occurred in PCR reactions using DNA derived from mouse IgG and mock 

immunoprecipitations (Fig. 3.5 B), further suggesting that positive ChIP results are 

specific to the antibodies used in the immunprecipitations.  
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Figure 3.5: Rat brain chromatin immunoprecipitation. (A) Fetal rat brain ChIP-
derived DNA was used as template for PCR reactions designed to amplify a 
segment of the rat CHRNB4 promoter. Histone H4 (“H4”) and input (“Input”) positive 
controls produced the expected product. Amplification was also observed for Sp1, 
Sp3, Sox10 and c-Jun PCR reactions (“Sp1”, “Sp3”, “Sox10”, “c-Jun”). ChIP 
negative controls, normal mouse IgG (“IgG”), mock immunoprecipitation (“No Ab”) 
and no-template PCR control (“No Template”) produced no amplified products. The 
arrow indicates the 200-base pair marker in the 100-base pair ladder (“M”). (B) Adult 
rat brain ChIP-derived DNA was used in PCR reactions designed to amplify the rat 
CHRNB4 promoter. Again, both the histone H4 (“H4”) and input (“Input”) positive 
controls produced the expected product. Amplification was also observed for Sp1, 
Sp3, Sox10 and c-Jun PCR reactions (“Sp1”, “Sp3”, “Sox10”, “c-Jun”). Finally, ChIP 
negative controls, normal mouse IgG (“IgG”), mock immunoprecipitation (“No Ab”) 
and no-template PCR control (“No Template”) produced no amplified products. The 
arrow indicates the 200-base pair marker in the 100-base pair ladder (“M”). Each 
ChIP experiment was carried out a minimum of three times. 
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Discussion 

nAChR subunit genes are expressed in a variety of locations in both the PNS and 

CNS (Gotti et al., 2007; Albuquerque et al., 2009). However, the molecular 

mechanisms underlying the temporally and spatially specific expression of nAChR 

subunit genes remain to be completely elucidated. Here I extended our previous in 

vitro work on protein-DNA interactions that occur at the CHRNB4 promoter CA box. 

In this study, using both cell lines and brain tissue as a chromatin source for ChIP 

assays, I have shown that Sp1, Sp3, Sox10 and c-Jun interact with the CHRNB4 

promoter in the chromatin environment. These data confirm and extend our previous 

results indicating that Sp1, Sp3, Sox10 and c-Jun interact with the CHRNB4 

promoter in vitro, as it is well known that chromatin structure can profoundly impact 

protein-DNA interaction (Li et al., 2007). 

 

The positive ChIP results for the transcription factors Sp1 and Sp3 are in agreement 

with previous data from our lab indicating an interaction between these proteins and 

the CHRNB4 promoter in vitro (Bigger et al., 1997). In addition to those present in 

the CHRNB4 promoter, there are several functionally relevant Sp1 binding sites in 

the CHRNA3 and CHRNA5 subunit gene promoters (Campos-Caro et al., 1999; 

Deneris et al., 2000; Valor et al., 2002). Due to the fact that these genes are located 

in a tight cluster in the mammalian genome, they are likely subject to some level of 

coordinate regulation. (Boulter et al., 1990; Yang et al., 1997). This coordinate 

regulation is likely responsible for directing the overlapping expression patterns of 

the clustered subunits in the mammalian nervous system (Winzer-Serhan and 
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Leslie, 1997; Albuquerque et al., 2009). It is my hypothesis that the coordinate 

regulation of these clustered subunits takes place at least in part through the action 

of Sp factors (Campos-Caro et al., 1999; Liu et al., 1999; Deneris et al., 2000; Valor 

et al., 2002).  

 

I have also shown here that Sox10 interacts with the CHRNB4 promoter in the 

chromatin environment, this finding is also corroborated by previous results from our 

laboratory indicating that the Sox10 protein can interact with and transactivate the 

CHRNB4 promoter in vitro (Liu et al., 1999; Melnikova et al., 2000b).   

 

There is no consensus c-Jun binding site in the CHRNB4 promoter and the c-Jun 

protein does not interact with the CHRNB4 promoter using in vitro binding assays. 

However, c-Jun synergistically transactivates the CHRNB4 promoter when co-

transfected with Sp1 (Melnikova and Gardner, 2001). This result is in agreement 

with the data presented here, demonstrating that c-Jun is associated with the 

endogenous CHRNB4 promoter in neuronal-like cell lines and in rodent brain tissue. 

c-Jun is most likely recruited to the CHRNB4 promoter through a protein-protein 

interaction with Sp1, as mutation of Sp binding sites in the CHRNB4 promoter 

abrogates transactivation by c-Jun (Melnikova and Gardner, 2001).  

 

By assembling previous data from our lab as well as the ChIP data discussed above, 

I have generated a model of protein-DNA interaction at the CHRNB4 promoter CA 

box (Fig. 3.6). Given the high GC content of the CA box, transcription factors in the 
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Sp family were likely candidates for proteins that may interact with the CHRNB4 

promoter. Using electrophoretic mobility shift assays we previously demonstrated 

that both the Sp1 and Sp3 are capable of interacting with the CHRNB4 promoter CA 

box in vitro. As expected, mutation of the CA box abrogated this interaction (Bigger 

et al., 1996; Bigger et al., 1997). In addition to their ability to directly interact with the 

CHRNB4 CA box in vitro, both Sp1 and Sp3 are capable of transactivating the 

CHRNB4 promoter (Bigger et al., 1997). Furthermore, co-immunoprecipitation 

assays demonstrated that Sp1 and Sp3 directly interact and when these factors are 

supplied in concert, synergistic transactivation of the CHRNB4 promoter is observed 

(Bigger et al., 1997). Finally, ChIP assays discussed in this chapter have 

demonstrated that these factors interact with the CHRNB4 promoter in the chromatin 

environment, in the mammalian brain (Fig. 3.5). Taken together these data indicate 

that Sp1 and Sp3 directly interact with the CHRNB4 promoter in order to enhance 

expression of the CHRNB4 gene. As a result, I have depicted Sp1 and Sp3 

contacting the CHRNB4 CA box, as well as each other (Fig. 3.6).  

 

When PC12 cells are differentiated with NGF, CHRNB4 gene expression is 

increased (Rogers et al., 1992). The signal cascade that results from the recognition 

of NGF by its receptor causes the phosphorylation and subsequent activation of the 

c-Jun transcription factor. NGF treatment also causes an increase in c-Jun 

expression (Greenberg et al., 1986).  
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Figure 3.6: Assembly of positive-acting factors at the CHRNB4 gene promoter. 
The coding region of the CHRNB4 gene is represented as a light green box with 
arrow above the coding region indicating that CHRNB4 expression is turned on. The 
double stranded nucleotide sequences of two transcriptional regulatory elements, 
the CT and CA boxes, are also shown. The transcription factor Sox10 is depicted as 
a yellow colored oval with Sp1, Sp3, and c-Jun depicted as colored squares above 
the CA box.  
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Since both CHRNB4 and c-Jun expression are increased during NGF treatment in 

these cells, c-Jun was an attractive candidate for a possible factor involved in 

controlling expression of the CHRNB4 gene. As discussed above, electrophoretic 

mobility shift assays revealed no interaction of c-Jun with the CHRNB4 promoter. 

This result was not surprising considering that the CHRNB4 promoter contains no c-

Jun binding site. Despite the lack of direct interaction with the CHRNB4 promoter in 

vitro, transient transfection assays revealed that c-Jun is capable of transactivating 

the CHRNB4 promoter (Melnikova and Gardner, 2001). Using lysates from NGF 

treated PC12 cells, we have previously shown that Sp1 and c-Jun directly interact 

(Melnikova and Gardner, 2001). In addition, when the site of Sp factor binding in the 

CHRNB4 promoter (the CA box) is mutated, c-Jun is no longer capable of 

transactivating the CHRNB4 promoter (Melnikova and Gardner, 2001). Furthermore, 

when Sp1 and c-Jun are supplied in concert, synergistic transactivation of the 

CHRNB4 promoter is observed (Melnikova and Gardner, 2001). These data suggest 

that c-Jun exerts its positive effect on CHRNB4 gene expression by virtue of its 

interaction with Sp1. The c-Jun ChIP assays discussed above demonstrate that this 

factor is also associated with the CHRNB4 promoter in the chromatin environment.  

In addition to cross-linking proteins to DNA, formaldehyde is also capable of causing 

some protein-protein cross-linking as well. This allows for the detection of proteins 

that are associated with DNA through a protein intermediate. However, 

formaldehyde cross-linking is not suitable for the detection of large multisubunit 

protein complexes due to its short 2Å spacer arm length (Orlando, 2000). This 

phenomenon explains the discrepancy between the positive results for c-Jun in the 
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ChIP assays discussed above and the negative result in the c-Jun electrophoretic 

mobility shift assays done previously in our lab (Melnikova and Gardner, 2001). 

Taken together, these data suggest that c-Jun is present at the CHRNB4 promoter 

by virtue of its interaction with Sp1, and most likely does not directly interact with 

DNA. As a result, I have depicted c-Jun contacting Sp1, but not directly interacting 

with DNA at the CHRNB4 promoter CA box (Fig. 3.6). 

 

Analysis of the CHRNB4 expression patterns during development of the nervous 

system revealed considerable spatial and temporal overlap with the expression of 

the Sox10 transcription factor (Zoli et al., 1995; Kuhlbrodt et al., 1998). The co-

expression of Sox10 and CHRNB4 in a variety of cell types during development lead 

to the hypothesis that Sox10 may act to regulate CHRNB4 expression. 

Electrophoretic mobility shift assays, using a segment of the CHRNB4 promoter 

containing the CT and CA boxes, demonstrated that Sox10 interacts with the 

CHRNB4 promoter in vitro. However, competition of Sox10 binding using a CA box 

mutant probe was not complete, suggesting that Sox10 interacts with the CHRNB4 

promoter in a region that overlaps the CA box (Liu et al., 1999). Transient 

transfection assays revealed that in addition to directly interacting with the CHRNB4 

promoter, Sox10 is also capable of transactivating the CHRNB4 promoter in vitro 

(Liu et al., 1999). Interestingly, co-immunoprecipitation assays revealed that Sox10 

is capable of physically interacting with Sp1 and Sp3, and can also synergistically 

transactivate the CHRNB4 promoter when supplied in concert with either Sp1 or Sp3 

(Melnikova et al., 2000b). In the ChIP assays performed on neuronal-like cells as 
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well as brain tissue I obtained positive results for Sox10, indicating that Sox10 

interacts with the CHRNB4 promoter in the chromatin environment. Taken together, 

these data indicate that Sox10 interacts with the CHRNB4 promoter, as well as the 

Sp1 and Sp3 transcription factors, in order to enhance expression of the CHRNB4 

gene. As a result, I have depicted Sox10 interacting with a region of DNA that 

encompasses the CA box. Due to the synergy observed with the Sp factors and the 

their direct physical interaction, Sox10 was depicted contacting the Sp1 and Sp3 

proteins, as well as the CHRNB4 promoter DNA sequence (Fig. 3.6).          

 

These experiments have provided insight into the interaction of regulatory factors 

with the CHRNB4 gene promoter CA box in the chromatin environment, where DNA 

is associated with histone proteins and may be organized into higher order 

structures. Using the ChIP assay, I was able to demonstrate these factors are 

associated with the endogenous CHRNB4 promoter, at the CA box, in neuronal-like 

cell lines and in rodent brain tissue. Taken together, these data suggest that Sp1, 

Sp3, c-Jun and Sox10 assemble at the CHRNB4 promoter CA box to enhance 

transcription of the CHRNB4 gene in the mammalian brain. The majority of the data 

presented here were published in 2008 (Scofield et al., 2008). 

 

Limitations and Future Perspectives 

In order to control for extensive formaldehyde cross-linking in CHRNB4 ChIP 

experiments, additional control PCRs should be preformed on ChIP-derived DNAs.  

In these control reactions, ChIP-derived DNA would be amplified with primers 
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designed to recognize the segment of DNA where the transcription factors of interest 

do not bind. Negative results in these PCRs would indicate that the association of 

Sp1, Sp3, Sox10 and c-Jun with the CHRNB4 promoter observed in the experiments 

discussed above is not a result of extensive cross-linking. 

 

In addition to negative sequence controls, ChIP experiments could also be 

performed with negative control immunoprecipitations. In this additional ChIP 

negative control, an antibody that recognizes a transcription factor which does not 

interact with the CHRNB4 promoter is used. For example, in PC12 cells the Sox10 

gene is not expressed, thus we would expect negative results in Sox10 PC12 ChIPs. 

Obtaining negative results in the additional ChIP negative controls would indicate 

that the positive results obtained in PC12 ChIPs are not due to non-specific 

antibody-DNA interactions or improper DNA fragmentation.  

 

As an additional layer of control, amplification of ChIP derived DNA could also be 

performed using positive control PCR primer sets. These primers would be designed 

to recognize segments of DNA that are known sites of interaction for the 

transcription factors of interest. Obtaining positive results in these additional ChIP-

derived DNA PCRs would further demonstrate that the interaction of Sp1, Sp3, 

Sox10 and c-Jun with the CHRNB4 promoter is specific and not an artifact of the 

experimental procedure.     
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CHAPTER IV: THE CA BOX IS AN ESSENTIAL REGULATORY FEATURE OF 

THE CHRNB4 PROMOTER 

 

Disclaimer: I performed all experiments described in this chapter with the exception 

of the generation of the WT transgenic construct and the sectioning and staining of 

the tissue shown in Figures 4.2 and 4.3 (CHRNB4 promoter activity in ED18.5 

transgenic mice and CHRNB4 promoter activity in the CNS of PD30 transgenic 

mice). Generation of the WT CHRNB4 promoter / lacZ transgenic construct was 

performed by Lei Bruschweiler Li. The tissues shown in Figures 4.2 and 4.3 were 

sectioned and stained by Ellen Trang and Sarah Binke, respectively. Finally, 

injection of DNA and all subsequent steps up to and including the generation of 

founder animals were performed by the University of Massachusetts Medical School 

Transgenic Animal Modeling Core for both the WT and mutant transgenic animal 

lines. 

 

Abstract 

GWAS studies have underscored the importance of the clustered neuronal nAChR 

subunit genes with respect to nicotine dependence as well as lung cancer 

susceptibility. CHRNB4, which encodes the nAChR !4 subunit, plays a major role in 

the molecular mechanisms that govern nicotine withdrawal. Thus, elucidating how 

expression of the CHRNB4 gene is regulated is critical for understanding the 

pathophysiology of nicotine addiction. We previously identified a CA box regulatory 

element, (5´– CCACCCCT –3´) critical for CHRNB4 promoter activity in vitro. We 
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further demonstrated that a 2.3-kb fragment of the CHRNB4 promoter region 

containing the CA box is capable of directing cell-type specific expression of a 

reporter gene to a myriad of brain regions that endogenously express the CHRNB4 

gene (Bruschweiler-Li et al., 2010). To test the hypothesis that the CA box is critical 

for CHRNB4 promoter activity in vivo, transgenic animals expressing a mutant form 

of the CHRNB4 promoter were generated. Reporter gene expression was not 

detected in any tissue or cell type at embryonic day 18.5 (ED18.5). Similarly, we 

observed dramatically reduced reporter gene expression at postnatal day 30 (PD30) 

when compared to wild type transgenic animals. Finally, we demonstrated that CA 

box mutation results in decreased interaction of the transcription factor Sp1 with the 

mutant CHRNB4 promoter. Taken together, these results demonstrate that the CA 

box is critical for CHRNB4 promoter activity in vivo. 

 

Introduction  

Cholinergic signaling mediated by nAChRs is involved in an array of physiological 

functions including learning, memory and attention (Albuquerque et al., 2009).  

Interestingly, substantial alterations in cholinergic signal transduction are observed 

in numerous neurological disorders including Alzheimer’s disease, schizophrenia, 

epilepsy and nicotine addiction (Whitehouse et al., 1988; Steinlein et al., 1995; De 

Fusco et al., 2000; Perry et al., 2001; Isacson et al., 2002; Perl et al., 2003; 

Teaktong et al., 2003). Thus, further elucidating the molecular mechanisms that act 

to control expression of the nAChR subunit genes will contribute not only to our 
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understanding of neuronal development but to a greater understanding of the 

pathophysiology of several neurological disorders as well. 

 

Neuronal populations in both the CNS and PNS express multiple nAChR subtypes 

(Goldman et al., 1987; Corriveau and Berg, 1993; Vernallis et al., 1993; Conroy and 

Berg, 1995; Gotti et al., 1997; Zoli et al., 1998; Genzen et al., 2001). Each distinct 

nAChR subtype displays unique biophysical and pharmacological properties, which 

are determined by subunit composition (McGehee and Role, 1995). The specific 

subunits assembled into a particular receptor subtype is dictated, at least in part, by 

the cell-type specific transcription of the individual subunit genes (Albuquerque et al., 

2009). 

 

Three of the twelve neuronal nAChR subunit genes, those encoding the !5, !3 and 

"4 subunits, are located in a highly conserved genomic cluster (Boulter et al., 1990).  

These three receptor subunit genes are co-expressed in a variety of cell types and 

tissues in the nervous system (Gotti et al., 2006). The co-expression of these three 

genes is thought to result from the coordinate regulation of the CHRNA5/A3/B4 

locus (Albuquerque et al., 2009). As a likely consequence of their co-expression, the 

!5!3"4 receptor subtype is the predominant nAChR expressed in the PNS where 

they play a crucial role in mediating fast synaptic transmission in autonomic ganglia 

(Rust et al., 1994; Conroy and Berg, 1995; Flores et al., 1996). Despite their largely 

overlapping patterns of expression, there are a small subset of regions where these 

genes appear to be uniquely regulated (Gotti et al., 2007; Grady et al., 2009). For 
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example, all three of the clustered nAChR subunit genes are expressed in the 

hippocampus, habenula and interpeduncular nucleus whereas only CHRNA3 and 

CHRNA5 are expressed in the ventral tegmental area (Improgo et al., 2010b). 

 

nAChR subunit gene KO mice have proven to be a valuable tool for deciphering the 

function of specific nAChR subtypes in the nervous system. CHRNB4 KO animals 

display significantly milder somatic symptoms of nicotine withdrawal (Salas et al., 

2004a). These results demonstrate that the !4 subunit plays a major role in the 

molecular mechanism underlying nicotine dependence. There is also some 

indication that blockade of "3!4 nAChRs results in a reduction of opioid and 

stimulant self-administration, suggesting that nAChRs that contain the !4 subunit are 

involved in mediating withdrawal syndromes elicited by other drugs of abuse (Glick 

et al., 2002). Thus, elucidating the molecular mechanisms underlying expression of 

the CHRNB4 gene will improve our understanding of nicotine addiction and 

withdrawal. 

 

The expression pattern of the CHRNB4 gene has been investigated by several 

groups, (Dineley-Miller and Patrick, 1992; Zoli et al., 1995; Winzer-Serhan and 

Leslie, 1997) yet the mechanisms that control its expression are not completely 

understood. We previously identified an 8-base pair transcriptional regulatory 

element in the CHRNB4 promoter that is critical for promoter activity in vitro (Bigger 

et al., 1996). This regulatory element, deemed the CA box due to its nucleotide 
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composition, is also the binding site for several transcription factors in vivo (Scofield 

et al., 2008). 

 

We recently demonstrated that a 2.3-kb fragment of the CHRNB4 promoter region 

containing the CA box is capable of directing cell-type specific and developmentally 

regulated expression of a reporter gene in vivo (Bruschweiler-Li et al., 2010). In 

these experiments we used a 2.3-kb fragment of the rat CHRNB4 promoter to drive 

expression of a lacZ reporter gene in transgenic mice. The lacZ reporter gene was 

placed upstream of a nuclear localization sequence in order to restrict reporter gene 

expression to the nucleus. This was done in order to more easily compare our data 

to previous CHRNB4 in situ hybridization studies (Fig. 4.1) (Dineley-Miller and 

Patrick, 1992; Zoli et al., 1995). We also included a matrix attachment region (MAR) 

in the transgenic construct, which has been shown previously to inhibit position- and 

copy number-dependent effects on transgene expression (Fig. 4.1) (Phi-Van and 

Stratling, 1996). In the CHRNB4 promoter / lacZ transgenic animals we observed a 

striking recapitulation of CHRB4 expression patterns at ED18.5. For example, we 

observed !-gal reactivity in the cortex, spinal cord, intestine and tongue (Fig. 4.2 A, 

A-D), all regions that endogenously express the CHRNB4 gene (Zoli et al., 1995; 

Winzer-Serhan and Leslie, 1997; Flora et al., 2000b; Glushakov et al., 2004). We 

also observed a striking recapitulation of CHRNB4 expression in the CNS at PD30.  

!-galactosidase (!-gal) expression was detected in the layer 5 of the frontal cortex, 

as well as in the piriform cortex, association cortex, and caudate putamen (Fig. 4.3 

A-D) (Bruschweiler-Li et al., 2010).  
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Figure 4.1: WT and mutant CHRNB4 promoter / lacZ transgene architecture. 
The CHRNA5/A3/B4 gene cluster is depicted as boxes with arrows depicting the 
direction of transcription. Below the clustered nAChR subunit genes is a schematic 
of the linearized construct used to generate the transgenic animals. MAR, matrix 
attachment region; NLS, nuclear localization sequence. Shown below this schematic 
are the nucleotide sequences of the WT and mutant CA boxes. Mutations made to 
the CA box in the mutant transgenic construct are shown in red with asterisks above 
the mutated nucleotides.    
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Figure 4.2: CHRNB4 promoter activity in ED18.5 transgenic mice. Sagittal 
sections of WT transgenic line 54 (A - D) and non transgenic (E - H) ED18.5 mouse 
embryos are shown. These sections were simultaneously stained for !-Gal activity 
and then counter-stained with neutral red. (A and E) cortex (IZ, intermediate zone; 
VZ, ventricular zone); (B and F), upper cervical region of the spinal cord; (C and G), 
mucosa of the small intestine; (D and H) tongue. !-gal staining of the tongue 
appears to be restricted to or near the longitudinal intrinsic muscle. Arrows in panel 
D indicate !-gal-expressing cells.  



77

 
Figure 4.3: CHRNB4 promoter activity in the CNS of PD30 transgenic mice. 
Coronal sections of WT transgenic line 39 (A - D) and non transgenic (E - H) PD30 
mouse brains are shown. These sections were simultaneously stained for !-Gal 
activity, and then counter-stained with neutral red. (A and E) layer 5 of the cortex 
(“5”); (B and F) piriform cortex; (C and G) association cortex; (D and H) caudate 
putamen; Arrows in panels C and D indicate !-Gal-expressing cells. 
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These brain regions are also areas of endogenous CHRNB4 gene expression 

(Dineley-Miller and Patrick, 1992; Winzer-Serhan and Leslie, 1997; Gahring et al., 

2004). To date, this transgenic model is the only system that accurately recapitulates 

the endogenous patterns of CHRNB4 during development in the PNS and CNS. 

Moreover, this transgenic model is also the only system that recapitulates the 

endogenous expression patterns of CHRNB4 in non-neuronal tissues like the 

intestine and tongue (Bruschweiler-Li et al., 2010).    

 

In this work, I sought to determine whether the CA box regulatory element within the 

CHRNB4 promoter region is indeed critical for the temporally and spatially restricted 

transcriptional activity of the CHRNB4 promoter in vivo. In order to test this 

hypothesis I generated transgenic animals using a transgenic construct with 3 base 

pair substitutions made to the CA box (Fig. 4.1). 

 

Results 

Mutation of the CA box significantly reduces CHRNB4 promoter activity in vitro    

Previously, we showed that mutagenesis of the CA box within the CHRNB4 

promoter virtually eliminates promoter activity in vitro (Bigger et al., 1996). When 

both the WT and mutant CHRNB4 promoter transgenic constructs were tested in 

vitro, significantly reduced levels of !-Gal activity were observed in the two neuronal-

like cell lines Neuro 2A and SN17 (Fig. 4.4). 
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Figure 4.4: WT and mutant CHRNB4 promoter activity in vitro. (A) DNA from 
either the WT (green) or mutant (red) transgenic constructs was transfected into 
Neuro 2A (left) or SN17 cells (right) along with a luciferase construct in which the 
SV40 promoter drives expression of the firefly luciferase gene. !-Gal and luciferase 
activities were measured with a luminometer. !-Gal activity was normalized to 
luciferase activity in order to correct for differences in transfection efficiencies. The 
data shown here are an average of 2 independent experiments, error bars represent 
standard error of the means, n=2. Student’s t-test indicated that CA box mutation 
significantly decreased the !-gal activity of the mutant transgenic construct in both 
cell lines, p<0.01 (**). (B) Raw data for the graphs shown above, values reported are 
relative light units. 
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These results indicated that the mutant construct was suitable for use in the 

generation of transgenic animals. A total of 6 CHRNB4 mutant promoter / lacZ 

founder lines (lines 19, 25, 28, 30, 33, and 83) were generated and analyzed for !-

Gal activity at both ED18.5 and PD30. Using a quantitative PCR approach 

(Bruschweiler-Li et al., 2010), copy number analysis revealed that line 19 has 10 

copies, line 25 has 63 copies, line 28 has 69 copies, line 30 has 25 copies, line 33 

has 23 copies and line 83 has 37 copies (Fig. 4.5). 

 

CA box mutation eliminates CHRNB4 promoter activity in transgenic animals at 

ED18.5 

In the WT CHRNB4 promoter / lacZ transgenic lines, we observed reporter gene 

expression in an array of regions of endogenous CHRNB4 gene expression at 

ED18.5 in both the CNS and PNS, including the spinal cord, intestine, and cortex 

(Fig. 4.6 A-C) (Zoli et al., 1995; Bruschweiler-Li et al., 2010). In contrast, no reporter 

gene expression was seen in any of these tissues at ED18.5 in any of the mutant 

CHRNB4 promoter / lacZ transgenic lines (Fig. 4.6 E-G). CHRNB4 gene expression 

is observed early during prenatal development in the dorsal root ganglia (DRG) 

where it co-assembles with the "3 and "5 subunits to form the "5"3!4 nAChR 

subtype. This receptor subtype has been shown previously to be the predominant 

subtype expressed in the PNS (Conroy and Berg, 1995) where it plays a role in 

nicotinic transmission at the synapses of autonomic ganglia (Vernallis et al., 1993). 

At ED18.5, we observed !-gal expression in the DRG of the WT transgenic lines  
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Figure 4.5: Copy number of the mutant CA box transgenic lines. Transgene 
copy number was determined using absolute quantification-based real-time PCR 
(Yuan et al., 2007) designed to amplify the lacZ sequence in the transgenic 
construct. A positive control sample from a mouse containing a single copy of a lacZ 
gene (1 copy +C) was used to normalize values obtained for CA box mutant 
transgenic lines 19, 25, 28, 30, 33 and 83. An additional positive control isolated 
from a mouse that has 2 copies of a lacZ transgene was also analyzed (2 copy +C). 
The data shown here are an average of values obtained for three individual animals 
from each transgenic line, error bars represent standard error of the means.   
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Figure 4.6: CHRNB4 promoter activity in ED18.5 WT and mutant transgenic 
mice. Sagittal sections of WT transgenic line 54 (A - D) and mutant transgenic line 
28 (E - H) ED18.5 mouse embryos are shown. These sections were simultaneously 
stained for !-Gal activity and then counter-stained with neutral red. (A and E) lower 
lumbar region of the spinal cord; (B and F), mucosa of the small intestine; (C and G) 
cortex (!-gal-expressing cells are located in the intermediate zone); (D and H) lower 
lumbar dorsal root ganglion (DRG). Arrows in panels A, C and D indicate !-gal-
expressing cells.  
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(Fig. 4.6 D) at levels that closely resemble what has been reported in previous 

CHRNB4 in situ experiments done by Changeux and colleagues (Zoli et al., 1995). 

However, no !-gal expression was observed in the DRG of any of the six mutant 

transgenic lines (Fig. 4.6 H).   

 

Mutant transgenic animals express very low levels of !-gal at PD30 in the CNS 

!-Gal activity was observed in PD30 WT transgenic lines in several areas that 

endogenously express the CHRB4 gene including the piriform cortex, medial 

habenula, and the subiculum (Dineley-Miller and Patrick, 1992; Winzer-Serhan and 

Leslie, 1997; Gahring et al., 2004; Bruschweiler-Li et al., 2010) (Fig. 4.7 A-C). Out of 

the 6 mutant transgenic founder lines investigated, no !-gal expression was 

observed in any region of the brain at PD30 in 4 of these lines, lines 25, 30, 33, and 

83 (Table 4.1). The remaining 2 lines, mutant lines 19 and 28, expressed extremely 

low levels of the !-gal in a small subset of brain regions (Table 4.1). Interestingly, no 

expression of !-gal was observed in the any of the mutant transgenic lines in several 

areas of endogenous CHRNB4 expression including the piriform cortex, medial 

habenula, or the subiculum (Dineley-Miller and Patrick, 1992; Winzer-Serhan and 

Leslie, 1997; Gahring et al., 2004) (Fig. 4.7 E-G). In addition, mutant transgenic lines 

19 and 28 displayed fewer !-gal positive cells when compared to the WT transgenic 

lines in several areas of endogenous CHRNB4 expression. For example, I observed 

a drastically reduced number of !-gal positive cells in the dentate gyrus of mutant 

transgenic line 28 when compared to WT transgenic line 39 (Fig. 4.6 D, H) (Table 

4.1).
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Figure 4.7: CHRNB4 promoter activity in the CNS of PD30 WT and mutant 
transgenic mice. Coronal sections of WT transgenic line 39 (A - D) and mutant 
transgenic line 28 (E - H) PD30 mouse brains are shown.  These sections were 
simultaneously stained for !-Gal activity and then counter-stained with neutral red.  
(A and E) piriform cortex (Pir); (B and F) medial habenula (Mhb); (C and G) 
subiculum (S); (D and H) hippocampus, cornu ammonis 1 (CA1), dentate gyrus 
(DG); Arrows in panels A and B indicate !-Gal-expressing cells.
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Table 4.1: CHRNB4 promoter activity in the CNS of PD30 WT and mutant 
transgenic mice.  

 
Expression levels were scored as follows: -, no expression; +, low level; ++, 
intermediate level; +++, high level; ++++, very high level.  
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Consistent with our previous observations at ED18.5, !-gal expression was detected 

in the DRG of 4 WT transgenic lines at PD30 while no expression of !-gal was 

detected in the DRG in any of the 6 mutant transgenic lines (Fig. 4.8). In the WT 

transgenic animals, there are higher numbers of lacZ positive cells in the DRG of 

ED18.5 transgenic animals (Fig. 4.6, D) when compared to PD30 WT transgenic 

animals (Fig. 4.8, A) This result is in agreement with previous in situ hybridization 

studies demonstrating that DRG expression of CHRNB4 is highest early during 

development (Zoli et al., 1995; Winzer-Serhan and Leslie, 1997). Taken together, 

these data suggest that the CA box regulatory element plays a critical role in 

directing CHRNB4 promoter activity in vivo.  

 

CA box mutation results in decreased levels of Sp1 association with the CHRNB4 

promoter in vivo 

 
We previously demonstrated that, in addition to virtually eliminating promoter activity, 

mutation of the CHRNB4 promoter CA box substantially reduced binding and 

transactivation by the transcription factor Sp1 in vitro (Bigger et al., 1996; Bigger et 

al., 1997). In order to test the hypothesis that CA box mutation results in reduced 

association of the Sp1 transcription factor with the CHRNB4 promoter in vivo, brain 

tissue from mutant CHRNB4 promoter / lacZ transgenic line 28 was used as a 

source of chromatin for ChIP assays. Using these animals I can assay for the 

interaction of Sp1 with the endogenous mouse CHRNB4 promoter or the transgenic 

rat CA box mutant CHRNB4 promoter. 
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Figure 4.8: CHRNB4 promoter activity of in the DRG of PD30 transgenic mice. 
Sections of WT transgenic line 54 (left) and mutant transgenic line 28 (right) PD30 
DRG are shown. These sections were simultaneously stained for !-Gal activity and 
then counter-stained with neutral red. Arrows in panel A indicate !-Gal-expressing 
cells.   
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ChIP-derived DNA from the mutant transgenic brain tissue experiments was used as 

template in PCR reactions with primers that recognize either the endogenous mouse 

CHRNB4 promoter region containing the CA box, or the corresponding segment of 

the rat transgenic promoter containing the mutant CA box. Consistent with our 

previous work (Scofield et al., 2008), PCR using Sp1 ChIP-derived DNA as template 

resulted in amplification of the endogenous mouse CHRNB4 promoter to levels that 

were approximately 3-fold higher than controls (Fig. 4.9, black bars), indicating an 

interaction of Sp1 with the endogenous CHRNB4 promoter. Conversely, PCR 

reactions using the same Sp1 ChIP-derived DNA as template did not result in 

amplification of the mutant transgenic CHRNB4 promoter above background levels 

(Fig. 4.9, white bars), indicating that there was no or significantly reduced interaction 

between Sp1 and the mutant CHRNB4 promoter. The H4 ChIP positive control is 

performed using an antibody directed against acetylated histone protein H4. 

Acetylation of the H4 protein is highly associated with actively transcribed genes 

(Hebbes et al., 1988; Jeppesen and Turner, 1993). As the mutant CA box CHRNB4 

promoter is significantly less active, this may be a possible explanation for the 

differences in the endogenous (black) and transgenic (white) H4 ChIPs.   

 

Discussion 

The biophysical diversity of nAChRs is a result of the large variety of subunit 

combinations that can assemble into functional receptors (Gotti et al., 2006).  
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Figure 4.9: CA box mutation results in decreased association of Sp1 with the 
CHRNB4 promoter. (A) ChIP experiments were performed using brain tissue from 
mutant CHRNB4 promoter / lacZ transgenic line 28. Transgenic brain ChIP-derived 
DNA was used as template for PCR designed to amplify either the WT endogenous 
mouse CHRNB4 promoter (black bars), or the CA box mutant transgenic rat 
CHRNB4 promoter (white bars). (H4) anti-acetylated histone protein H4; (IgG) 
normal rabbit IgG; (Sp1) Transcription factor Sp1; (No Ab) Mock IP. The data shown 
here are an average of 4 independent experiments, expressed as percent Input. 
Student’s t-test statistical analysis indicated a significant difference between the Sp1 
ChIPs and the WT IgG and mock ChIP controls, p <0.01 (**). Student’s t-test 
statistical analysis was also performed on the transgenic mutant CHRNB4 promoter 
values (white bars) and indicated no significant difference between Sp1 ChIPs and 
the IgG and mock ChIP controls at the mutant CHRNB4 promoter.  Error bars 
represent standard error of the means, n=4. (B) Representative agarose gels for 
either the endogenous wild type CHRNB4 promoter PCR (left) or the mutant 
transgenic CHRNB4 promoter PCR (right).  
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While the exact molecular mechanisms controlling the incorporation of a particular 

subunit into a mature receptor are not completely understood, regulation at the level 

of transcription plays a critical role. Consistent with this hypothesis, the CHRNA5, 

CHRNA3, and CHRNB4 genes are co-expressed in a variety of cell types in the PNS 

where the !5!3"4 receptor subtype is the predominant nicotinic receptor subtype 

expressed (Rust et al., 1994; Conroy and Berg, 1995). The co-expression of these 

subunits is likely the result of coordinate regulation of the CHRNA5/A3/B4 locus by 

shared transcriptional regulatory features, an example of which is the positive 

regulation of these three genes by the transcription factor Sp1 (Yang et al., 1995; 

Bigger et al., 1997; Campos-Caro et al., 1999; Improgo et al., 2010b). Data from our 

lab as well as from others indicate that Sp1 likely acts in concert with cell-type 

specific regulatory factors (e.g., Nuclear transcription factor Y and Paired mesoderm 

homeobox protein 2A) in order to direct expression of the clustered subunit genes to 

the appropriate cell types (Campos-Caro et al., 1999; Melnikova et al., 2000b; Valor 

et al., 2002; Benfante et al., 2007; Scofield et al., 2008). 

 

Several groups, including our own, have intensively studied the transcriptional 

regulatory mechanisms that act to control expression of these three subunit genes. 

These studies have uncovered several regulatory elements (discussed below) that 

are involved in directing cell-type specific expression of the clustered nAChR subunit 

genes. In these studies, I have used mutant CHRNB4 promoter transgenic mice to 

demonstrate that the CA box is a critical mediator of CHRNB4 promoter activity in 

vivo.  Mutation of the CA box resulted in absent or substantially decreased 
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expression of the !-gal in an array of brain regions where !-gal expression is 

observed in the WT CHRNB4 promoter / lacZ transgenic lines (Bruschweiler-Li et al., 

2010) and CHRNB4 is endogenously expressed (Winzer-Serhan and Leslie, 1997; 

Gahring et al., 2004). Taken together, these results demonstrate that the CA box is 

crucial for CHRNB4 promoter activity in vivo. 

 

Previous studies done by Deneris and colleagues have uncovered additional 

transcriptional regulatory elements that influence expression of the CHRNB4 gene. 

One such element, deemed the conserved non-coding region #4 (CNR4), is located 

approximately 30-kb upstream of the CHRNB4 gene (Fig. 4.10, A) (Xu et al., 2006). 

CNR4 appears to contain regulatory information needed to direct expression of the 

CHRNB4 gene to the pineal gland and interpeduncular nucleus (Xu et al., 1999a), 

two areas of endogenous CHRNB4 gene expression where we do not see !-gal 

expression in the WT (Bruschweiler-Li et al., 2010) or mutant CHRNB4 promoter / 

lacZ transgenic lines. Additional experiments done by Deneris and colleagues 

demonstrated that CNR4 is critical for the coordinate expression of the CHRNB4 and 

CHRNA3 genes in the pineal gland as well as in the superior cervical ganglion. 

Based on its high degree of conservation and its distal location from the genes it 

acts to regulate, CNR4 is thought to function as a locus control region-like regulatory 

domain (Xu et al., 2006). In addition to CNR4, Deneris and colleagues have also 

characterized a transcriptional enhancer element located in the CHRNB4 3´-

untranslated region (called the !43´ enhancer) (Fig. 4.10, A). 
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Figure 4.10: Positive and negative regulation of the CHRNA5/A3/B4 locus. (A 
and B) Coding regions of the clustered subunits are represented as colored boxes 
with arrows that indicate the direction of transcription. Four transcriptional regulatory 
elements are depicted in this figure: A3I5 (green box), the !4 3 ! enhancer (purple), 
the SacI – HindIII fragment of the CHRNB4 promoter region (dark grey box), and the 
distal CNR4 regulatory region (white box). The boundaries of the latter two regions 
are labeled relative to the transcriptional start site of the CHRNB4 gene. Green 
arrows in A denote positive regulatory effects in a neuronal context whereas red 
lines in B indicate negative transcriptional regulation occurring in non-neuronal cells.  
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Interestingly, mutation of several E26 transformation-specific sequence (ETS) factor 

binding sites in the enhancer can severely diminish expression of the CHRNA5, 

CHRNA3 and CHRNB4 genes in the adrenal gland (Xu et al., 2006) (Fig. 4.10, A).  

Furthermore, mutation of ETS binding sites within the !43´ enhancer also diminished 

expression of these genes in the superior cervical ganglion (Xu et al., 2006). Apart 

from the positive regulatory elements described above, we have previously shown 

that there is a transcriptional repressor element present in the fifth intron of the 

CHRNA5 gene (A3I5) (Fuentes Medel and Gardner, 2007) (Fig. 4.10, B). The A3I5 

repressor is capable of inhibiting transcription from CHRNA3 and CHRNB4 gene 

promoters in an orientation- and position-independent manor. Interestingly, 

repression of transcription by A3I5 was cell-type specific, only occurring in cells with 

little or no expression of the clustered nAChR subunit genes (Fuentes Medel and 

Gardner, 2007). It is clear from these data that several transcriptional regulatory 

elements located around the clustered subunit genes act in concert to provide the 

necessary regulatory information to drive expression of the required subunits in the 

appropriate cell type (Yang et al., 1997; Francis and Deneris, 2002; Xu et al., 2006; 

Fuentes Medel and Gardner, 2007; Bruschweiler-Li et al., 2010). 

 

ChIP experiments done on mutant transgenic brain tissue demonstrated a reduced 

interaction of Sp1 with the mutant CA box CHRNB4 promoter (Fig. 4.9). To date, 

Sp1 is the only factor that has been investigated using CA box mutant transgenic 

brain tissue. These data are in agreement with previous studies from our lab 

indicating that CA box mutation abrogates Sp factor binding and transactivation of 
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the CHRNB4 promoter in vitro (Bigger et al., 1996; Bigger et al., 1997). Because the 

CHRNB4 promoter lacks a TATA box, Sp1 could play a crucial role in tethering the 

basal transcription machinery to the CHRNB4 promoter, as it does at other TATA-

less promoters (Pugh and Tjian, 1991). The lack of Sp1 interaction with the mutant 

CA promoter provides a plausible molecular mechanism for the severely reduced 

CHRNB4 promoter activity observed in the CA box mutant CHRNB4 promoter / lacZ 

transgenic lines. CA box mutation may also impede the transactivation ability of 

additional transcriptional regulatory factors that associate with the CHRNB4 

promoter by virtue of protein-protein interactions with Sp1 (Melnikova et al., 2000a; 

Scofield et al., 2008). This is likely the case for transcription factor c-Jun, which 

physically interacts with Sp1 and is capable of activating transcription from the 

CHRNB4 promoter in vitro, despite the fact that the CHRNB4 promoter lacks a c-Jun 

binding site. At the WT CHRNB4 promoter, Sp1 and c-Jun synergistically activate 

transcription, however, when the CA box is mutated, the CHRNB4 promoter is no 

longer responsive to either Sp1 or c-Jun (Melnikova and Gardner, 2001). In addition, 

the transcription factor Sox10 also synergistically transactivates the CHRNB4 

promoter when supplied in concert with Sp1 (Melnikova et al., 2000b). Similar to 

what is observed with c-Jun, CA box mutation also dramatically reduces Sox10’s 

ability to activate transcription from the CHRNB4 promoter (Liu et al., 1999). From 

these data it appears that Sp1 may act to nucleate a complex of positive-acting 

transcription factors needed for cell-type specific expression for the CHRNB4 gene 

in vivo. However, additional experimentation is required to test the hypothesis that 
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Sp1 binding is upstream of the binding of the other factors shown previously to 

interact with the CHRNB4 promoter CA box in vivo. 

 

In conclusion, these results demonstrate that the CA box is a key determinant of 

CHRNB4 promoter activity at ED18.5 and PD30 in the PNS and CNS. Furthermore, 

these data also indicate that Sp1 plays a critical role in directing the positive 

transcriptional regulatory effect of the CA box in vivo. Positive regulation of 

the CHRNB4 promoter by Sp1 at the CA box is a crucial aspect of the intricate 

regulatory cascade that ensures accurate expression of the CHRNB4 gene, allowing 

nAChRs containing the !4 subunit to participate in both normal physiological 

processes (Dani and Bertrand, 2007a; Albuquerque et al., 2009), as well as tobacco-

related pathological conditions (Salas et al., 2004a; Salas et al., 2009). 

 

These studies provide insight into the protein-DNA interactions that govern 

expression of the CHRNB4 gene in the mammalian brain. Furthermore, these data 

indicate that the CA box is an essential regulatory element in the CHRNB4 promoter, 

and that mutation of this element reduces promoter activity as well as the interaction 

of the transcription factor Sp1 with the CHRNB4 promoter in vivo. 

 

Limitations and Future Perspectives 

Although there was no CHRNB4 promoter activity in the mutant transgenic animals 

at ED18.5, it remains unclear if the CA box is involved in directing basal promoter 

activity or if it governs the developmentally and temporally regulated expression of 
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the CHRNB4 gene. Due to the dramatically reduced promoter activity observed in 

the mutant transgenic animals, it is most likely that the CA box and its interaction 

with Sp1 is critical for basal activity of the CHRNB4 promoter. This hypothesis is 

consistent with findings from other groups demonstrating that regulation by Sp1 is 

essential for the basal activity of other TATA-less promoters (Botella et al., 2001; 

Kim et al., 2010; Yu et al., 2010). Future studies should focus on testing this 

hypothesis by investigating the association of RNA polymerase II and the general 

transcription factors with the wild type and mutant CA box CHRNB4 promoter. These 

experiments would provide insight into the molecular mechanism behind the 

reduction of transcriptional activity observed at the mutant CA box CHRNB4 

promoter.  

 

In order to further elucidate how CA box mutation impacts transcription factor 

occupancy at the CHRNB4 promoter, additional Sp3, Sox10 and c-Jun ChIP assays 

should be performed using mutant transgenic animal brain tissue. These 

experiments could test the hypothesis that CA box mutation impacts the interaction 

of Sp3, Sox10 and c-Jun with the CHRNB4 promoter, in the mammalian brain. I 

would expect the additional ChIP assays to demonstrate little to no interaction of 

Sp3, Sox10 and c-Jun with the mutant promoter as CA box mutation abrogates 

transactivation of the CHRNB4 promoter by these factors in vitro (Bigger et al., 1997; 

Melnikova et al., 2000b; Melnikova and Gardner, 2001). 
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In the work discussed above we used a conventional transgenic approach to 

investigate WT and mutant CHRNB4 promoter activity in vivo. The integration site of 

the CHRNB4 promoter reporter construct and the number of transgene integration 

events are not controlled. As discussed above, we included a MAR element in our 

transgenic constructs to control for integration position-dependent effects as well as 

variability in levels of transgene expression (Phi-Van and Stratling, 1996). Due to the 

fact that we observed very similar results in mutant transgenic lines 19 and 28, 

which had the largest difference in copy number (Fig. 4.5), I was not concerned that 

the copy number was impacting the results.   

 

The hypothesis that the CA box is critical for activity of the CHRNB4 promoter in vivo 

could also be investigated with CHRNB4 promoter CA box mutant knock in 

transgenic mice. Through the use of homologous recombination techniques, mice 

could be generated with the mutations discussed above made to the endogenous 

CHRNB4 promoter CA box. Transgenic mice generated with this technique would 

not be subject to the complications of transgene integration site or number of 

transgene integrations. Using these animals, future experiments would be able to 

focus on the impact that CA box mutation has on endogenous CHRNB4 gene 

expression. I would expect that, as observed in vitro and in the transgenic animals 

discussed above, CHRNB4 promoter activity would be severely diminished in the 

mutant CA box knock in animals. As a result, these mice would likely express the 

CHRNB4 gene at very low levels, if at all. When using mutant CA box knock in 

animals in behavioral assays it is most likely that these animals would display 
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characteristics similar to the CHRNB4 KO animals. Thusly, I would expect that the 

mutant CA box knock in animals would have an altered anxiety related-response 

(Salas et al., 2003a), be less sensitive to nicotine induced seizures (Salas et al., 

2004b), and display an overall reduction in the somatic symptoms of nicotine 

withdrawal (Salas et al., 2004a). These experiments would be able to test the 

hypothesis that CA box mutation causes a functionally relevant decline in CHRNB4 

gene expression. If I were running the laboratory I would make the CA box knock in 

mouse as it would be the most elegant way to determine the relevance of CA box 

mutation in vivo, and would allow me to test the hypothesis that CA box mutation 

results in a decline in CHRNB4 expression that ultimately affects behavior.      

 

Additional gene expression analysis assays could be performed using the knock in 

mice to test the hypothesis that the reduced expression of CHRNB4 results in an 

augmented nAChR subtype expression profile. Because mutant CA box knock in 

mice would likely have extremely low levels of CHRNB4 gene expression, they may 

also have reduced expression of !3 subunit mRNA, much like CHRNB4 KO mice 

(Salas et al., 2004b). I could test this hypothesis by comparing the ability of an !3"4 

receptor specific antagonist to block nicotine-induced whole cell currents in WT, 

CHRNB4 KO and mutant CA box knock in animals. In these experiments, the 

efficacy of the !3"4 receptor selective conotoxin AU1B to block nicotine induced 

whole cell currents in neurons of WT animals would be compared to what is 

observed in CHRNB4 KO and mutant CA box knock in animals (Azam and 

McIntosh, 2009). Neurons in the habenulo-interpeduncular pathway would be 
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selected for recording as they express high levels of the CHRNA3 and CHRNB4 

genes (Salas et al., 2009). As a result of diminished CHRNB4 and subsequently 

CHRNA3 gene expression, there would be fewer !3"4 receptors and subsequently 

a less potent inhibition of nicotine induced currents by AU1B in the CHRNB4 KO and 

mutant CA box knock in animals. These results would demonstrate that CA box 

mutation causes a functionally relevant decline in CHRNB4 gene expression, 

resulting in fewer functional "4-containing receptors. 
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CHAPTER V: DISCUSSION 

 

Signal transmission through nAChRs is essential for the function of the nervous 

system, with cholinergic signaling involved in the molecular mechanisms underlying 

learning, memory formation and attention (Albuquerque et al., 2009). In order to 

perform specific biological functions, physiologically diverse neuronal nAChR 

subtypes are expressed in unique patterns throughout the mammalian brain (Gotti et 

al., 2007; Albuquerque et al., 2009). By precisely controlling the expression of the 

individual nAChR subunit genes, highly specialized neurons can produce the 

required nAChR subtypes needed in order to perform specific biological functions.  

Thus, elucidating the underpinnings of the transcriptional regulation of the nAChR 

subunit genes is essential for gaining a thorough understanding of neuronal 

cholinergic signaling. 

 

Three of the twelve genes that encode neuronal nicotinic receptor subunits, 

CHRNA5, CHRNA3, and CHRNB4, are located in a tight genomic cluster, 

suggesting that they are subject to some level of coordinate regulation (Boulter et 

al., 1990; Improgo et al., 2010b). The !5!3"4 subtype is the most prevalent nAChR 

expressed in the PNS (Conroy and Berg, 1995). In the CNS, receptors that contain 

these subunits play a central role in mediating ACh release in the habenulo-

interpeduncular pathway (Quick et al., 1999; Grady et al., 2009). Recently, 

independent studies from several laboratories have shown that genetic variability at 

the CHRNA5/A3/B4 locus can be linked not only to an increased risk of nicotine 
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dependence, but also to an increased risk of lung cancer (Greenbaum and Lerer, 

2009). Taken together, these findings highlight the importance of the !5!3"4 

nAChR subtype with respect to susceptibility to tobacco addiction and tobacco 

related disease. Hence, the !5!3"4 nAChR may play an important role in the 

molecular mechanisms that govern tobacco addiction, adding an additional 

component to the more commonly studied !4"2 and !7 receptor subtypes 

implicated in the pathophysiology of tobacco related disease (Picciotto et al., 1998; 

Schuller et al., 2000; Wang et al., 2001; Tapper et al., 2004; Kuryatov et al., 2005; 

Walters et al., 2006). In this work, I have focused on the transcriptional regulation of 

the CHRNB4 gene, which has been shown previously to be critical for nicotine 

withdrawal symptoms in mice (Salas et al., 2004a). 

 

Transcription factor interaction with the CHRNB4 promoter CA box 

The data presented in Chapter III confirm and extend previous data from our lab 

indicating that Sp1, Sp3, and Sox10 interact with the CHRNB4 promoter at the CA 

box region in vitro by demonstrating that these proteins also interact with the 

CHRNB4 promoter in the chromatin environment (Bigger et al., 1997; Melnikova et 

al., 2000b). I have also shown that c-Jun interacts with the CHRNB4 promoter in the 

chromatin environment (Scofield et al., 2008), which is consistent with previous data 

from our lab demonstrating that c-Jun is capable of transactivating the CHRNB4 

promoter in vitro (Melnikova and Gardner, 2001). In combination, these data strongly 

suggest that Sp1, Sp3, Sox10 and c-Jun functionally interact with the CHRNB4 
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promoter, at the CA box, to promote transcription of the CHRNB4 gene in the 

mammalian brain.  

 

My data on protein-DNA interaction at the CHRNB4 promoter contribute to a more 

thorough understanding of the molecular mechanisms that control expression of the 

CHRNB4 gene. These data can be compiled with additional results from our lab as 

well as the Deneris, Criado and Fornasari groups, to present a detailed description 

of the transcriptional regulatory mechanisms that control expression of the CHRNA5, 

CHRNA3 and CHRNB4 genes (Fig. 4.9). From the data presented in both Chapters 

III and IV, it is most likely that the association of Sp1 with the CHRNB4 promoter CA 

box aids in the recruitment of additional positive-acting co-factors, including Sp3, 

Sox10 and c-Jun, which ultimately enhance transcription of the CHRNB4 gene. 

Similar to the CHRNB4 gene promoter, the CHRNA5 and CHRNA3 promoters also 

lack TATA boxes (Boulter et al., 1990) and contain several functional Sp1 binding 

sites (Yang et al., 1995; Campos-Caro et al., 1999; Flora et al., 2000a; Terzano et 

al., 2000; Campos-Caro et al., 2001), indicating that Sp1 may play a crucial role in 

regulating expression of the CHRNA5 and CHRNA3 genes as well. 

 

Transgenic Animal Models  

Transgenic animals were first used to study the transcriptional regulatory 

mechanisms of nAChR subunit genes by Changeux and colleagues. The Changeux 

group used a 1.163-kb segment of the !2 promoter to drive expression of lacZ in 

transgenic mice (Bessis et al., 1995). These experiments demonstrated that the !2 
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promoter confers neuron-specific expression of !-gal in a pattern that closely 

resembles endogenous !2 gene expression. In addition, Changeux and colleagues 

demonstrated that the 1.163-kb !2 promoter fragment used in the transgenic 

construct contains both positive and negative regulatory elements, a hallmark of 

neuronal gene promoters (Bessis et al., 1995).  

 

Several groups have used transgenic model systems to investigate the function of 

regulatory elements the control expression of the CHRNA5/A3/B4 genes. For 

example, the intragenic region between the CHRNB4 and CHRNA3 genes, 

containing the !43’ enhancer and the CHRNA3 promoter region, was used to drive 

expression of lacZ in transgenic mice by the Deneris group (Yang et al., 1997). In 

these animals, reporter gene expression resembled expression of the CHRNA3 

gene, with !-gal reactivity restricted to the olfactory bulb, medial habenula, locus 

coeruleus and medial geniculate. However, no reporter gene expression was 

observed in the PNS, indicating that the regulatory information that directs 

expression of the CHRNB4 and CHRNA3 genes to PNS tissues is not contained in 

this segment of DNA. However, additional analysis of the !43´ enhancer region 

indicated that this regulatory element is capable of directing neuron-specific 

expression. 

 

In these experiments, Deneris and colleagues used a construct where the !43´ 

enhancer was placed upstream of the SV40 viral promoter and a luciferase reporter 

gene. The resulting construct was then electroporated in a variety of cell lines, 
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having the highest activity in neuronal-like PC12 cells (McDonough and Deneris, 

1997). In an extension of this analysis Deneris and colleagues transfected the !43´ 

enhancer / reporter construct into dissociated rat sympathetic ganglia cultures, which 

contain nAChR-positive neurons as well as nAChR-negative non-neuronal cells. 

These experiments demonstrated that the !43´ enhancer confers neuron-specific 

activity, as 90% of neurons transfected with the enhancer construct were positive for 

the luciferase and cells transfected with a control construct lacking the !43´ 

enhancer displayed a significant reduction in neuron-specific expression 

(McDonough et al., 2000). One possible explanation for the lack of PNS expression 

of the reporter gene in the transgenic animals discussed above could be the 

differences between the experimental methods used to investigate the activity of the 

!43´ enhancer. It is possible copy number- and the integration position-dependent 

factors may have impacted the ability of the transgenic construct to direct expression 

to neurons in the PNS. Moreover, neuron-specific expression in vivo may require 

additional regulatory elements not present in the transgenic construct used by the 

Deneris group. 

 

Using a P1-derived artificial chromosome (PAC) containing 132 kb of DNA, including 

the entire rat CHRNA5/A3/B4 locus, the Deneris group generated an additional set 

of transgenic mice that express the rat CHRNA5, CHRNA3 and CHRNB4 genes 

under direction of transcriptional regulatory information included in the 132-kb PAC 

construct. These animals express the CHRNA5, CHRNA3 and CHRNB4 transgenes 

in a variety of regions where they are endogenously expressed including the SCG, 
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pineal gland, adrenal gland and trigeminal ganglia (Xu et al., 2006). In this model 

system, mutation of several ETS factor binding sites in the !43´ enhancer eliminated 

expression of all three rat nAChR transgenes in the in the adrenal gland. These data 

indicate that the ETS sites in the !43´ enhancer are required for expression of the 

CHRNA5, CHRNA3 and CHRNB4 genes in the adrenal gland in vivo (Xu et al., 

2006).  

 

The Deneris group has also investigated several regions of non-coding DNA 

upstream of the CHRNB4 gene that are phylogenetically conserved, with 70% 

identity across the human, mouse and rat sequences (Xu et al., 2006). As discussed 

in Chapter IV, when the CNR4 region is deleted from the PAC construct, the 

resulting transgenic animals do not express the rat CHRNA3 or CHRNB4 

transgenes in the pineal gland, indicating that CNR4 is required for expression of the 

CHRNA3 and CHRNB4 genes in the pineal gland in vivo (Xu et al., 2006). As an 

extension of this analysis, an additional set of transgenic animals was generated 

with a transgenic construct with CNR4 placed upstream of a luciferase reporter 

gene. This CNR4 / reporter transgenic model demonstrated that the 599-bp CNR4 

segment of DNA is capable of directing expression of !-gal to the medial habenula, 

interpeduncular nucleus, inferior colliculus, adrenal gland, pineal gland, and the SCG 

(Xu et al., 2006), all regions of endogenous CHRNB4 gene expression (Dineley-

Miller and Patrick, 1992; Winzer-Serhan and Leslie, 1997; Gahring et al., 2004).  
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We have shown previously that a 2.3-kb segment of the CHRNB4 promoter, 

containing the CA box, is capable of directing expression of !-gal to a variety of 

tissues and cell types that endogenously express the CHRNB4 gene at ED18.5 and 

PD30, in the CNS and PNS (Bruschweiler-Li et al., 2010). At ED18.5, we observed 

!-gal expression in WT transgenic animals in the cerebral cortex, piriform cortex, 

and medial habenula. We also observed !-gal expression in the cervical, thoracic 

and lumbar root ganglia, as well as the spinal cord (Bruschweiler-Li et al., 2010). 

This pattern of !-gal expression closely resembles the endogenous patterns of 

CHRNB4 gene expression in the PNS and CNS (Dineley-Miller and Patrick, 1992; 

Zoli et al., 1995; Winzer-Serhan and Leslie, 1997; Gahring et al., 2004). As 

discussed in Chapter IV, we did not observe !-gal expression in the pineal gland, 

this is likely due to the fact that our transgenic construct does not contain the CNR4 

regulatory element which has been shown to be required for CHRNB4 promoter 

activity in this region (Xu et al., 2006).  

 

At PD30, we observed !-gal expression in WT transgenic animals in the piriform 

cortex, dentate gyrus, medial habenula, subiculum and inferior colliculus (Scofield et 

al., 2008), all regions of endogenous CHRNB4 gene expression (Dineley-Miller and 

Patrick, 1992; Winzer-Serhan and Leslie, 1997; Gahring et al., 2004). As indicated in 

Chapter IV, we did not observe expression of !-gal in the interpeduncular nucleus in 

our transgenic mice (Bruschweiler-Li et al., 2010), a region where the CHRNB4 gene 

is known to be highly expressed (Dineley-Miller and Patrick, 1992; Winzer-Serhan 

and Leslie, 1997; Gahring et al., 2004). This is likely due to the fact that that our 
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transgenic construct did not include CNR4, which has been shown by the Deneris 

group to be required for reporter gene expression in the interpeduncular nucleus (Xu 

et al., 2006).  

 

It is interesting to note that the CHRNB4-CHRNA3 intragenic region, the CNR4 

region and the 2.3-kb region of the CHRNB4 promoter used by our lab are all 

capable of directing expression of a reporter gene to the medial habenula. The 

amount of redundant regulatory information responsible for gene expression in this 

region suggests that receptors containing the !5, !3 and "4 subunits play an 

important role in mediating cholinergic signaling in this region. This hypothesis is 

supported by recent findings indicating that nAChRs containing the !3 and "4 

subunits are responsible for ACh release in the habenulo-interpeduncular pathway 

(Grady et al., 2009), and also that nAChRs in this region are necessary for nicotine 

withdrawal in mice (Salas et al., 2009). 

 

While a significant amount of redundant regulatory sequences exist at the 

CHRNA5/A3/B4 locus, unique regulatory elements responsible for directing gene 

expression to very specific regions also exist. As discussed above, the Deneris 

group has shown that mutation of the "43´ enhancer abrogates expression of the 

CHRNA5, CHRNA3 and CHRNB4 transgenes in the adrenal gland, while deletion of 

CNR4 abrogates expression of CHRNA3 and CHRNB4 subunit genes in the pineal 

gland (Xu et al., 2006). In WT transgenic animals, we do not observe expression of 

"-gal in either the pineal or adrenal gland. This is most likely due to the fact that the 
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transgenic construct used does not contain the !43´ enhancer or CNR4. Moreover, 

the data presented by the Deneris group indicate that the !43´ enhancer and the 

CNR4 regions are required for directing expression to the adrenal and pineal gland, 

respectively. 

 

Interestingly, our CHRNB4 promoter / reporter transgenic construct is the first to 

direct reporter gene expression to the subiculum and piriform cortex at ED18.5 and 

PD30 (Bruschweiler-Li et al., 2010), both regions where the CHRNB4 gene is 

endogenously expressed (Dineley-Miller and Patrick, 1992; Zoli et al., 1995; Winzer-

Serhan and Leslie, 1997; Gahring et al., 2004). Additional studies would be required 

to determine if the regulatory information contained in the SacI – HindIII fragment of 

the CHRNB4 promoter is necessary for gene expression in the subiculum and 

piriform cortex, or if other regulatory elements can also direct expression to these 

brain regions.  

 

Another advantage of our CHRNB4 promoter / reporter transgenic model is the 

recapitulation the expression pattern of the CHRNB4 gene in the PNS during 

development. Not only do we observe reporter gene expression in PNS ganglia 

where CHRNB4 is known to be highly expressed (Rust et al., 1994), we also 

observe promoter activity in non-neuronal tissues, like the intestine and tongue (Fig. 

4.2 C and D), (Bruschweiler-Li et al., 2010). These results are consistent with 

previous in situ experiments demonstrating that CHRNB4 message is present in 

these regions (Zoli et al., 1995; Winzer-Serhan and Leslie, 1997; Flora et al., 2000b; 
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Glushakov et al., 2004). Our lab is also the first to use transgenic animal models to 

investigate CHRNB4 promoter activity during development; the studies done by the 

Deneris and colleagues were performed on adult animals (Yang et al., 1997; Xu et 

al., 2006).  

 

In order to directly assess the importance of the CA box regulatory element in the 

CHRNB4 promoter, I generated an additional set of CHRNB4 promoter / reporter 

transgenic animals with expression of the lacZ gene driven by a mutant CA box 

CHRNB4 promoter. These experiments demonstrated that mutation of the CA box 

results in absent or severely reduced reporter gene expression in nearly all areas 

where expression is observed in the WT transgenic animals and where the CHRNB4 

gene is endogenously expressed (Fig. 4.5, 4.6 and Table 4.1). This drastic reduction 

of CHRNB4 promoter activity was observed in CA box mutant transgenic animals at 

ED18.5 and at PD30, in the CNS and PNS. These data strongly suggest that the CA 

box is an essential regulatory feature of the CHRNB4 promoter and is required for 

CHRNB4 promoter activity in vivo, which is consistent with previous data from our 

lab demonstrating that CA box mutation drastically reduces CHRNB4 promoter 

activity in vitro (Bigger et al., 1996).  

 

I have also demonstrated that mutation of the CHRNB4 promoter CA box results in a 

significant decrease in the interaction of Sp1 with the CHRNB4 promoter in brain 

tissue (Fig. 4.9). These results are in agreement with previous data from our lab 

demonstrating that mutation of the CA box eliminates transactivation of the CHRNB4 
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promoter by Sp1 in vitro (Bigger et al., 1997). Taken together, these data strongly 

suggest that the loss of promoter activity that results from CA box mutation is a 

consequence of decreased interaction of Sp1 with the mutant CHRNB4 promoter. 

These findings advance the current understanding of the transcriptional regulation of 

the CHRNB4 gene by identifying a critical regulatory element in the CHRNB4 

promoter and also by demonstrating that regulation of the CHRNB4 promoter by Sp1 

is necessary for promoter activity in vivo. 

 

By assembling multiple regulatory elements into one construct expression one could 

design a targeting construct that would more accurately mirror expression of the 

endogenous CHRNB4 gene. Using this more comprehensive transgenic construct, 

one could selectively express any gene of interest in CHRNB4 expressing cells. For 

example, it would be interesting to use a construct like this to drive expression of a 

modified diphtheria toxin, in order to selectively eliminate CHRNB4 expressing 

neurons and the neuronal circuits that they are located in (Miyoshi and Fishell, 2006; 

Wang et al., 2006). Using this transgenic model one could test the hypothesis that 

CHRNB4-expressing neurons are critical for nicotine withdrawal or withdrawal 

syndromes elicited by other drugs of abuse. Given that antagonism of !3"4-

containing receptors in the habenulo-interpeduncular pathway has been shown to 

reduce opioid and stimulant self administration in rats (Glick et al., 2002), I would 

expect that animals with selective death of CHRNB4-expressing neurons would 

display an alteration in self administration or reinstatement of drug use following a 

drug-paired cue during abstinence, when compared to wild type littermates.  It has 
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been shown previously that chronic use of several drugs of abuse, including 

methamphetamine, cocaine and nicotine, results in atrophy of neurons in the 

habenulo-interpeduncular circuit, suggesting that the death of these neurons may 

contribute to addiction-associated behaviors (Ellison, 2002). 

 

Another possibility would be to use the combined regulatory elements to drive 

expression of the CRE recombinase gene. These mice could be crossed with 

genetically engineered mice with loxP sites flanking a gene of interest. Using this 

experimental design, one could eliminate expression of a particular gene, selectively 

in CHRNB4-expressing cells. This system could be used to eliminate tyrosine 

hydroxylase expression, and subsequently dopamine neurotransmission, in neurons 

that express the CHRNB4 gene. These mice could be used to determine if 

dopamine signaling, in specific neurons, is involved in nicotine addiction and 

withdrawal. In this manner, one could selectively inactivate modes of 

neurotransmission in CHRNB4-expressing neurons by targeting key enzymes in 

their biosynthetic pathways.  Similar results could be achieved by using the 

comprehensive construct to direct expression of shRNA designed to recognize a 

gene of interest. This method may be more efficient as it would not require crossing 

CRE transgenic mice to loxP mice, and would still effectively eliminate expression of 

the target gene in CHRNB4-expressing cells.  
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Summary 

Overall, the work presented here provides insight into the molecular mechanisms 

that control expression of the CHRNB4 gene. These findings contribute to a growing 

body of work describing the underpinnings of the transcriptional regulation of the 

clustered neuronal nAChR subunit genes CHRNA5, CHRNA3 and CHRNB4. Here I 

have shown that a multicomponent regulatory complex assembles at the CHRNB4 

promoter CA box, in the context of native chromatin, to drive expression of the 

CHRNB4 gene in the mammalian brain. Moreover, this CA box regulatory element is 

critical for CHRNB4 promoter activity in vivo. Mutation of this region results in a 

severe decrease in promoter activity as well as a decreased association of the 

transcription factor Sp1 with the CHRNB4 promoter in the mammalian brain. Taken 

together these results indicate that Sp1, Sp3, Sox10 and c-Jun interact with the CA 

box to enhance expression of the CHRNB4 in the mammalian brain.  
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APPENDIX I: PROTEIN-DNA INTERACTION AT THE CHRNB4 PROMOTER CT 

BOX 

 

Abstract 

Our laboratory has had a long-standing interest in the transcriptional mechanisms 

underlying expression of the CHRNA5, CHRNA3, and CHRNB4 genes, which are 

located in a tight genomic cluster. Two proteins, heterogeneous nuclear 

ribonucleoprotein K (hnRNP K) and Pur! were purified by virtue of their ability to 

interact with the CHRNB4 promoter CT box in vitro. Here I analyze the ability of Pur! 

and hnRNP K to interact with the CHRNB4 promoter in the context of native 

chromatin using a ChIP approach. These experiments demonstrated that hnRNP K 

physically interacts with the CHRNB4 promoter in OBL21 cells but not in Neuro 2A 

or PC12 cells.  In contrast, I obtained negative Pur! ChIP results in OBL21, Neuro 

2A and PC12 cells. Using the Neuro 2A cell line, I knocked down expression of 

either Pur! or hnRNP K and measured CHRNA5, CHRNA3 and CHRNB4 gene 

expression with quantitative RT-PCR. I found that in Neuro 2A cells, hnRNP K 

knockdown had no impact on expression levels of the CHRNA5, CHRNA3 and 

CHRNB4 genes despite a significant reduction in both hnRNP K message and 

protein. Conversely, Pur! knockdown resulted in decreased levels of Pur!, 

CHRNA5, CHRNA3 and CHRNB4 gene expression. Subsequent analysis of protein 

levels in siRNA treated cells revealed that Pur! knockdown results in a substantial 

reduction of Pur!, !3, and !5 protein levels, while an increase in "4 protein levels 

was detected.
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Introduction 

Regulation of gene expression at the level of transcription is crucial for both the 

control of normal cellular processes and for neuronal differentiation. By regulating 

which genes are transcribed, individual cells can produce specific proteins required 

to perform unique cellular functions, allowing for the existence of a vast array of 

highly specialized cells. The production of mRNA is carried out by RNA polymerase 

II and a set of general transcription factors (Fuda et al., 2009). These factors act to 

regulate RNA polymerase II’s binding, enzymatic activity, and eventual 

disassociation from the DNA template (Fuda et al., 2009; Selth et al., 2010; Weake 

and Workman, 2010). An additional set of transcription factors act to enhance or 

repress transcription by influencing the recruitment of RNA polymerase II to specific 

genes. These transcription factors are sequence-specific DNA-binding proteins that 

recognize stretches of DNA called transcriptional regulatory elements (Pan et al., 

2010). Regulatory elements are usually located in non-coding stretches of DNA and 

can be positioned either in close proximity or far distally from the genes they act to 

regulate (Bulger and Groudine, 2010). Thus, gene expression can be precisely 

controlled through the interaction of transcription factors with transcriptional 

regulatory elements. By expressing a particular program of transcription factors, 

individual cell types can precisely control gene expression, allowing these cells to 

perform distinct functions. 

 

We previously identified a 19-base pair transcriptional regulatory element in the 

CHRNB4 promoter referred to as the CT box, because of its nucleotide composition 
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(Hu et al., 1995). We have also shown previously that mutation of this element 

results in a substantial reduction of CHRNB4 promoter activity in the neuronal-like 

cell line SN17 (Hu et al., 1995). In addition, we demonstrated, using in vitro binding 

assays, that the CT box specifically interacts with DNA-binding proteins from rat 

brain nuclear extracts (Hu et al., 1995). Using affinity chromatography, two proteins 

were isolated by virtue of their affinities for the CHRNB4 promoter CT box.  

Subsequent peptide sequencing revealed the identity of the two CT box-interacting 

proteins to be Purine rich element binding protein A (Pur!) (Du et al., 1997) and 

heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Du et al., 1998). 

 

The Pur! protein is a single polypeptide of approximately 40 kDa that interacts 

specifically with purine-rich motifs (Bergemann and Johnson, 1992). Pur! is one of 

four Pur proteins in the Pur gene family, which consists of Pur!, Pur" and two 

isoforms of Pur# (Gallia et al., 2000). Pur! can positively or negatively impact 

transcription of target genes and is also capable of interacting with both single-

stranded DNA and RNA (Gallia et al., 2000). In addition, Pur! possesses DNA 

helicase activity (Wortman et al., 2005) and plays a role in several physiological 

processes including transcription, translation, and cell growth (Gallia et al., 2000). At 

the CHRNB4 promoter, Pur! interacts preferentially with the single-stranded 3´ – 

GGGAGGGGAGGGGA – 5´ sequence located on the minus strand of DNA at the 

CT box (Fig. 1.7).   

 



116

hnRNP K is a 65kDa member of the ribonucleoprotein complex of heterogeneous 

nuclear RNA in mammalian cells (Bomsztyk et al., 1997). hnRNP K binds 

tenaciously to pyrimidine rich sequences (Matunis et al., 1992) and can also either 

activate or inhibit transcription of target genes (Bomsztyk et al., 2004). Like Pur!, 

hnRNP K is capable of interacting with both single-stranded DNA and RNA, yet it 

has higher affinity for single-stranded DNA (Tomonaga and Levens, 1995). hnRNP K 

plays a role in chromatin remodeling, transcription, RNA editing, and repression of 

translation (Bomsztyk et al., 2004). At the CHRNB4 promoter, hnRNP K interacts 

with the single-stranded 5´ – CCCTCCCCTCCCCT – 3´ sequence located on the 

plus strand of the CT box. We have shown previously that hnRNP K can inhibit Sp 

factor binding to the CHRNB4 promoter in vitro as well as Sp factor-mediated 

transactivation of the CHRNB4 promoter drosophila SL2 cells (Du et al., 1998). We 

have also shown by in vitro co-immunoprecipitation that Pur! and hnRNP K 

physically interact (Melnikova et al., 2000a).  

 

Given the negative transcriptional role that hnRNP K plays at the CHRNB4 promoter 

and the cooperative down-regulation of transcription in other systems by Pur! and 

hnRNP K (Da Silva et al., 2002; Wang et al., 2008), I hypothesize that hnRNP K and 

Pur! act to repress expression of the CHRNB4 gene. Based on the previous data 

from our lab discussed above, I have constructed the following model of hnRNP K 

and Pur! mediated repression of CHRNB4 gene expression (Fig. A1.1). 
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Figure A1.1: Model of hnRNP K and Pur!-mediated repression of CHRNB4 
gene expression The coding region of the CHRNB4 gene is represented as a light 
green box with the red X indicating that CHRNB4 expression is turned off. The 
double stranded nucleotide sequences of two transcriptional regulatory elements, 
the CT and CA boxes, are also shown. Transcription factors hnRNP K and Pur! are 
depicted as red and pink colored ovals, contacting each other and separating the 
DNA strands at the CT box. Sp1 and Sp3 are depicted as colored squares above the 
CA box and cannot associate with the CHRNB4 promoter (depicted as red lines) as 
a result of strand separation by hnRNP K and Pur!. Sox10 and c-Jun are depicted 
as a yellow oval and an orange square respectively and also do not interact with the 
CHRNB4 promoter. 
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Results 

OBL21 cells express high levels of hnRNP K and Pur! mRNA and low levels 

of CHRNA5, CHRNA3 and CHRNB4 mRNA. 

Several observations led to development of the hypothesis that hnRNP K and Pur! 

act to negatively impact transcription from the CHRNB4 promoter: first, hnRNP K 

and Pur! have higher affinity for the single stranded elements of the CT box (Du et 

al., 1997; Du et al., 1998); second, both hnRNP K and Pur! have the ability to 

unwind the DNA duplex (Bomsztyk et al., 2004; Wortman et al., 2005); third, hnRNP 

K was previously shown to inhibit Sp factor binding and transactivation of the 

CHRNB4 promoter (Du et al., 1998); finally, these factors have been shown to 

cooperatively inhibit expression of other target genes (Da Silva et al., 2002; Wang et 

al., 2008). I began my analysis by investigating the expression levels of the Pur!, 

hnRNP K, CHRNA5, CHRNA3 and CHRNB4 in the mouse olfactory bulb derived cell 

line OBL21. qRT-PCR analysis of OBL21 cells revealed that the clustered nAChR 

subunit gene mRNAs are expressed at low levels while hnRNP K and Pur! mRNA 

are expressed at high levels. The correlation of high levels of hnRNP K and Pur! 

expression with low levels of CHRNB4 expression is consistent with the hypothesis 

that hnRNP K and Pur! act in concert to repress transcription of the CHRNB4 gene 

(Fig. A1.2). Similar to what was observed for CHRNB4, CHRNA5 and CHRNA3 

mRNA was also minimally expressed in OBL21 cells. 
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Figure A1.2: Expression levels of hnRNP K, Pur!, CHRNA5, CHRNA3 and 
CHRNB4 in OBL21 cells. The mouse olfactory bulb derived cell line OBL21 is 
shown in the bright field image on the left. mRNA levels of CHRNA3 (green), 
CHRNA5 (blue), CHRNB4 (red), hnRNP K (light green) and Pur! (orange) are 
expressed relative to the housekeeping gene "2M. Error bars represent standard 
error of the means, n=3. 
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hnRNP K interacts with the CHRNB4 promoter in OBL21 cells 

In order to determine if hnRNP K and Pur! interact with the CHRNB4 promoter in 

cells that express low levels of CHRNB4 mRNA, I performed ChIP assays using the 

OBL21 cell line (Fig. A1.3). Sox10 ChIP experiments were performed in this cell line 

as a positive control due to the fact that the interaction of Sox10 with the 

CHRNB4 promoter has been well characterized both in vitro (Liu et al., 1999) and in 

the context of native chromatin (Scofield et al., 2008). In these experiments, 

enrichment of the CHRNB4 promoter fragment in the Sox10 and hnRNP K ChIPs 

was significantly higher than that observed in the IgG and No Ab ChIP negative 

controls, indicating an interaction of Sox10 and hnRNP K with the 

CHRNB4 promoter in these cells. Enrichment of the CHRNB4 promoter fragment in 

the Pur! ChIPs was no higher than what was observed in the IgG and No Ab ChIP 

negative controls, indicating a negative ChIP result for Pur! at the CHRNB4 

promoter in these cells. These data suggest that hnRNP K is present at the 

CHRNB4 promoter in OBL21 cells, however additional experimentation is required to 

determine if Pur! is not. Further experimentation would be able to determine if the 

negative Pur! ChIP result from the use of an antibody not suited for the ChIP assay. 

Additionally, using the same ChIP-derived DNA, a set of separate positive control 

PCRs could be performed with primers designed to amplify a segment of DNA 

shown previously to be a site of Pur! interaction. Data obtained from these 

experiments would aid in deciphering if Pur! truly does not interact with the 

CHRNB4 promoter in OBL21 cells, or if the negative results obtained were an 

artifact of the experimental procedure.
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Figure A1.3: hnRNP K and Sox10 interact with the CHRNB4 promoter in OBL21 
cells. OBL21 cells were used in ChIP experiments to investigate hnRNP K and Pur! 
interactions with the CHRNB4 promoter in the context of native chromatin. Sox10 
ChIPs were performed as a positive control. OBL21 ChIP-derived DNA was 
quantified using absolute quantification-based real time PCR. Data from three 
individual ChIP experiments were pooled and analyzed for statistical significance 
using the Student’s t-test.  Both hnRNP K and Sox10 values differed significantly 
when compared to the IgG negative control, whereas Pur! did not (***, p value 
<0.001). Error bars represent standard error of the means, n=3. 
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Both differentiated and undifferentiated PC12 cells express high levels of hnRNP K 

and intermediate levels of Pur!   

The treatment of the neuronal-like rat pheochromocytoma cell line PC12 with NGF is 

a well-established model of neuronal differentiation in vitro (Greene and Tischler, 

1976; Henderson et al., 1994; Hu et al., 1994; Leppa et al., 1998). Following the 

application of NGF, PC12 cells extend neurite-like processes, change their program 

of gene expression and become electrically excitable (Greene and Tischler, 1976). 

Interestingly, CHRNB4 is among the genes upregulated in response to NGF 

(Henderson et al., 1994). Thus, PC12 cells provide a system where expression of 

the CHRNB4 gene can be enhanced in vitro. I first measured expression levels of 

hnRNP K and Pur! in both differentiated and undifferentiated PC12 cells to 

determine whether these genes are expressed in PC12 cells. qRT-PCR analysis 

revealed that both hnRNP K and Pur! are expressed in undifferentiated and 

differentiated PC12 cells (Fig. A1.4). hnRNP K expression is approximately 4-fold 

higher than Pur! in both cases. No difference in expression levels of hnRNP K or 

Pur! mRNA were observed when comparing undifferentiated and differentiated 

PC12 cells  (Fig. A1.4).  

 

Neither hnRNP K nor Pur! interacts with the CHRNB4 promoter in undifferentiated 

or differentiated PC12 cells 

I expected that if hnRNP K or Pur! were involved in transcriptionally repressing 

CHRNB4 gene expression in PC12 cells, I would observe a reduction in hnNRP K or 

Pur! association with the CHRNB4 promoter following NGF treatment. 
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Figure A1.4: hnRNP K and Pur! mRNA expression levels in undifferentiated 
and differentiated PC12 cells. Bright field images of the rat pheochromocytoma 
cell line PC12 +/- NGF are shown on the left. hnRNP K (light green) and Pur! 
(orange) gene expression levels are depicted in the right panel relative to the house 
keeping gene "2M. Error bars represent standard error of the means, n=3. 
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In order to test this hypothesis, I performed hnRNP K and Pur! ChIP assays in 

undifferentiated and differentiated PC12 cells. In these experiments, enrichment of 

the CHRNB4 promoter fragment in the hnRNP K and Pur! ChIPs was no higher 

than that of the IgG and No Ab ChIP negative controls, in both undifferentiated and 

differentiated PC12 cells (Fig. A1.5). These data suggest that hnRNP K and Pur! do 

not interact with the CHRNB4 promoter in PC12 cells. However, due to the large 

amount of variability and the low n, additional PC12 ChIP experiments need to be 

performed in order to confirm these results. As discussed above, additional positive 

control PCRs of ChIP-derived DNA would also aid in deciphering if hnRNP K and 

Pur! truly do not interact with the CHRNB4 promoter in differentiated and 

undifferentiated PC12 cells.  

 

Neuro 2A cells express high levels of hnRNP K, Pur!, CHRNA3 and CHRNB4 

mRNAs, while CHRNA5 mRNA is expressed at an intermediate level. 

In order to extend our analysis into an additional neuronal-like cell line, I investigated 

the expression levels of the Pur!, hnRNP K, CHRNA5, CHRNA3 and CHRNB4 

genes in the mouse neuronal-like cell line Neuro 2A (Olmsted et al., 1970). In Neuro 

2A cells, expression of hnRNP K is approximately double what is observed for 

Pur! (Fig. A1.6). In addition, the CHRNA3 and CHRNB4 genes are also highly 

expressed, with CHRNA5 mRNA expressed at an intermediate level (Fig. A1.6). 

According to the current model I am testing (Fig. A1.1), in Neuro 2A cells I would 

expect that hnRNP K and Pur! do not interact with the CHRNB4 promoter, given 

that the CHRNB4 gene is highly expressed.  
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Figure A1.5: hnRNP K and Pur! do not interact with the CHRNB4 promoter in 
PC12 cells. PC12 cells were used in ChIP experiments to investigate hnRNP K and 
Pur! interactions with the CHRNB4 promoter in undifferentiated and differentiated 
PC12 cells. PC12 ChIP-derived DNA was quantified using absolute quantification-
based real time PCR. Data from two individual ChIP experiments for either 
undifferentiated or differentiated PC12 cells were pooled and analyzed for statistical 
significance using the Student’s t-test. Statistical analysis of both undifferentiated 
and differentiated PC12 cell ChIP experiments revealed no significant differences 
between ChIP controls and hnRNP K or Pur!. Error bars represent standard error of 
the means, n=2. 
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Figure A1.6: expression levels of hnRNP K, Pur!, CHRNA5, CHRNA3 and 
CHRNB4 in Neuro 2A cells. The mouse neuroblastoma derived cell line Neuro 2A 
is shown in the bright field image on the left. mRNA levels of CHRNA3 (green), 
CHRNA5 (blue), and CHRNB4 (red) subunits, as well as hnRNP K (light green) and 
Pur! (orange) are expressed relative to the housekeeping gene "2M. Error bars 
represent standard error of the means, n=3. 
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hnRNP K and Pur! do not interact with the CHRNB4 promoter in Neuro 2A cells  

In order to test the hypothesis that hnRNP K and Pur! do not interact with the 

CHRNB4 promoter in cells that express high levels of the CHRNB4 gene, ChIP 

assays were performed using Neuro 2A cells. Enrichment of the CHRNB4 promoter 

fragment in the hnRNP K and Pur! ChIPs was no higher than background levels 

observed in the IgG and No Ab ChIP negative controls. These results suggest that 

hnRNP K and Pur! do not interact with the CHRNB4 promoter in Neuro 2A cells 

(Fig. A1.7). As the results for both hnRNP K and Pur! were negative in Neuro 2A 

ChIP experiments, additional positive control PCRs of Neuro 2A ChIP-derived DNA 

could also be performed in order to confirm that hnRNP K and Pur! do not interact 

with the CHRNB4 promoter in these cells. 

 
 
Knockdown of hnRNP K in Neuro 2A cells has no effect on expression of the 

CHRNA5, CHRNA3 and CHRNB4 genes 

In order to assess the possible transcriptional regulatory role that hnRNP K plays at 

the CHRNA5/A3/B4 locus, siRNA experiments were performed in Neuro 2A cells. In 

these experiments, expression of hnRNP K, GAPDH, CHRNA5, CHRNA3 and 

CHRNB4 genes were measured in negative siRNA and hnRNP K siRNA treated 

cells. In Neuro 2A cells, transfection of hnRNP K specific siRNA resulted in a 

decrease in hnRNP K message levels of 69.5% ± 1.7% (Fig. A1.8). When comparing 

negative siRNA treated and hnRNP K siRNA treated cells using the Student’s t-test, 

no significant changes in CHRNB4 gene expression were observed, p = 0.93 (Fig. 

A1.8). 
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Figure A1.7: hnRNP K and Pur! do not interact with the CHRNB4 promoter in 
Neuro 2A cells. Neuro 2A cells were used in ChIP experiments to investigate 
hnRNP K and Pur! interactions with the CHRNB4 promoter in the chromatin 
environment. Neuro 2A ChIP-derived DNA was quantified using absolute 
quantification-based real-time PCR. Data from two individual ChIP experiments were 
pooled and analyzed for statistical significance using the Student’s t-test. Statistical 
analysis revealed that neither hnRNP K nor Pur! values differed significantly when 
compared to the IgG or mock IP ChIP negative controls. Error bars represent 
standard error of the means, n=2. 
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Figure A1.8: hnRNP K knockdown has no impact on CHRNA3, CHRNA5 and 
CHRNB4 gene expression in Neuro 2A cells. Gene expression data for hnRNP K, 
CHRNA3, CHRNA5, CHRNB4 and GAPDH in cells treated with negative control 
siRNA (red), or hnRNP K siRNA (blue). Data from two individual siRNA experiments 
were pooled and analyzed for statistical significance using the Student’s t-test. 
hnRNP K expression in knockdown cells differed significantly when compared to the 
negative control siRNA treated cells. ***, p value <0.001. GAPDH expression in 
knockdown cells did not differ significantly when compared to the negative control 
siRNA treated cells, p value >0.05. Error bars represent standard error of the means, 
n=2. 
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In addition, there were no significant changes in mRNA levels of the other clustered 

nAChR subunit genes CHRNA5 and CHRNA3, p = 0.27 and 0.089 respectively. The 

expression of a housekeeping gene GAPDH was measured as a negative control. 

When comparing negative siRNA treated and hnRNP K siRNA treated cells, there 

was also no significant change in GAPDH gene expression, p = 0.1499.  

 

In order to demonstrate that hnRNP K siRNA treatment of Neuro 2A cells resulted in 

reduction of both hnRNP K message and protein levels, Western blot analysis of 

siRNA treated cells was performed. As expected, these results demonstrate that a 

69.5% ± 1.7% reduction of hnRNP K message results in a significant decrease in 

hnRNP K protein levels (Fig. A1.9). These data indicate that hnRNP K knockdown 

was successful and that reduction of hnRNP K message and protein levels has no 

impact on the expression levels of the CHRNA5, CHRNA3 and CHRNB4 genes. 

Taken together, these data suggest that hnRNP K does not regulate expression of 

the CHRNA5, CHRNA3 and CHRNB4 genes in Neuro 2A cells. As there was a 

significant decrease in both hnRNP K message and protein levels, I would expect 

that a hnRNP K function is reduced in siRNA treated cells. I could further test this 

hypothesis by performing additional positive controls in future hnRNP K siRNA 

experiments. By measuring expression of a gene shown previously to be regulated 

by hnRNP K in negative and hnRNP K siRNA treated cells, I would be able to further 

test the hypothesis that a 70% reduction in hnRNP K message results in a loss of 

hnRNP K function.    
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Figure A1.9: hnRNP K knockdown results in a significant decrease in hnNRP K 
protein levels in Neuro 2A cells. Lysates from hnRNP K and negative control 
siRNA treated Neuro 2A cells were separated using SDS-PAGE in duplicate. 
Following electrophoresis, proteins were transferred to a nitrocellulose membrane 
and probed with anti-hnRNP K or anti-!-Actin antibodies. hnRNP K and !-Actin band 
intensities were quantified using the VersaDoc gel imaging system and software. 
hnRNP K band intensity in hnRNP K and negative siRNA treated cells are 
expressed normalized to the corresponding !-Actin band intensities. Data were 
analyzed for statistical analysis using the Student’s t-test, * indicates a p value 
<0.05. Error bars represent standard error of the means, n=2. 
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Knockdown of Pur! in Neuro 2A cells results in decreased expression of CHRNA5, 

CHRNA3 and CHRNB4 mRNA 

In order to investigate the functional role that Pur! plays at the CHRNB4 promoter, 

siRNA experiments were performed in Neuro 2A cells. Expression of Pur!, 

CHRNA5, CHRNA3, CHRNB4 and GAPDH were measured in both negative siRNA 

and Pur! siRNA treated cells. Transfection of Pur! siRNA resulted in a decrease in 

Pur! message levels of 68% ± 12% (Fig. A1.10). Surprisingly, when comparing 

negative siRNA treated and Pur! siRNA treated cells, significant reductions in 

CHRNA5, CHRNA3 and CHRNB4 mRNA levels were observed. CHRNA3 gene 

expression was reduced by 51.5% ± 10.7%, CHRNA5 gene expression was reduced 

by 36.54% ± 7.7% and CHRNB4 gene expression was reduced by 26.8% ± 9.7% 

(Fig. A1.10). As described above, expression of a housekeeping gene GAPDH was 

also measured as a negative control. When comparing negative siRNA treated and 

Pur! siRNA treated cells, no significant change in GAPDH expression was 

observed. These data indicate that knockdown of Pur! does not result in a non-

specific reduction in gene expression. It appears that in Neuro 2A cells, Pur! 

positively regulates expression of the CHRNA5, CHRNA3 and CHRNB4 genes.  

 

In order to verify that Pur! knock down results in a reduction in Pur! protein levels, 

Western blot analysis was performed. In these experiments, Pur! siRNA treated 

cells had significantly lower levels of Pur! protein when compared to negative 

control siRNA treated cells (Fig. A1.11). 
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Figure A1.10: Pur!  knockdown results in significant decreases in CHRNA3, 
CHRNA5 and CHRNB4 gene expression in Neuro 2A cells. Gene expression 
data for Pur!, CHRNA3, CHRNA5, CHRNB4 and GAPDH in cells treated with 
negative control siRNA (red), or Pur! siRNA (green). Data from four individual 
siRNA experiments were pooled and analyzed for statistical significance using the 
Student’s t-test. Pur! expression in knockdown cells differed significantly when 
compared to the negative control siRNA treated cells, as did expression of the 
CHRNA3, CHRNA5 and CHRNB4 genes. ***, p value <0.001; **, p value <0.01; *, p 
value <0.05. Error bars represent standard error of the means, n=4. 
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Figure A1.11: Pur!  knockdown results in a significant decrease in Pur! 
protein levels in Neuro 2A cells Lysates from Pur! and negative control siRNA 
treated Neuro 2A cells were electrophoresed through a 10% SDS polyacrylamide gel 
in duplicate. Separated proteins were transferred to a nitrocellulose membrane and 
probed with anti-Pur! or anti-"2M antibodies. Pur! and "2M band intensities were 
quantified using the VersaDoc gel imaging system and software. Pur! band intensity 
in Pur! and negative siRNA treated cells is expressed normalized to the 
corresponding "2M band intensities. Data were analyzed for statistical analysis 
using the Student’s t-test, * indicates a p value <0.05. Error bars represent standard 
error of the means, n=2. 
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These data suggest that reduction of Pur! message, and subsequently Pur! protein 

levels, results in decreased expression of the CHRNA5, CHRNA3 and CHRNB4 

genes. Despite the observed reduction in Pur! protein levels following siRNA 

treatment, detection of Pur! protein should be optimized further in order more 

robustly quantify the reduction of Pur! protein levels following siRNA treatment. 

Additionally, Pur! Western blot experiments of siRNA treated cells could also be 

performed in parallel using a mouse monoclonal anti-Pur! antibody generated by 

Johnson and colleagues, shown to be suitable for Western blot analysis (Liu et al., 

2005). 

 

In order to test the hypothesis that reduction of CHRNA5, CHRNA3 and CHRNB4 

mRNA results in a corresponding reduction at the protein level, additional Western 

blot experiments were performed using siRNA treated cells. In these experiments, 

Neuro 2A cells were treated with either negative control or Pur! siRNA then 

harvested and split into two aliquots. The first set of cells was used for gene 

expression analysis (Fig. A1.12, A) while the second set of cells was used for 

Western blot analysis (Fig. A1.12, B). qRT-PCR analysis of Pur! siRNA treated cells 

indicated a 78.2% ± 10.2% reduction of Pur! gene expression, a 60.3% ± 2% 

reduction of CHRNA3 gene expression, a 37.9% ± 10% reduction of CHRNA5 gene 

expression  and a 34.9% ± 10% reduction in CHRNB4 gene expression, consistent 

with the experiment presented in Fig. A1.10. Importantly, Pur! siRNA treatment did 

not impact levels of GAPDH gene expression (Fig. A1.12 A).  
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Figure A1.12: Pur! knockdown results in reduced nAChR subunit !3, and !5 
protein levels in Neuro 2A cells. (A) Gene expression data for Pur!, CHRNA3, 
CHRNA5, CHRNB4 and GAPDH in cells treated with negative control siRNA (red), 
or Pur! siRNA (green). Error bars represent standard error of the means obtained 
from triplicate measurements of a single experiment, n=1. (B) Lysates from Pur! 
and negative control siRNA treated Neuro 2A cells were analyzed as described for 
Fig. A1.11. Pur!, nAChR !3, !5 and "4 subunits, and "2M band intensities were 
quantified using the VersaDoc gel imaging system and software.  
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Western blot analysis of Pur! siRNA treated Neuro 2A cells indicated reduced levels 

of the Pur!, nAChR !3 and !5 proteins while an increase in nAChR "4 subunit 

protein was observed (Fig. A1.12 B). This result is difficult to interpret given that a 

reduction in !5 protein was observed, yet the decrease in CHRNA5 message is 

almost identical to what was observed for CHRNB4. It is possible, however, that the 

detection of nAChR !5, !3, and "4 protein levels was not accurate due to limitations 

of the commercially available anti-nAChR antibodies. These concerns were brought 

to light in a paper published around the time I was performing these experiments. In 

this study, immunoreactivity observed during Western blot analysis of nAChR protein 

was identical when using lysates from either wild type mice, or the corresponding 

nAChR subunit KO mice (Moser et al., 2007). Among the antibodies shown to be 

non-specific were the anti-nAChR !3 and "4 subunit antibodies used in the 

experiments discussed above (Fig. A1.12). These data suggest that the antibodies 

used may not be suitable for Western blot analysis (Moser et al., 2007). The 

specificity of the anti-nAChR !5 subunit antibody used in Figure A1.12 has yet to be 

tested using !5 KO animals.  

 

Other groups have had some success measuring nAChR subunit protein levels 

using custom made antibodies (Lindstrom, 2000a; Kuryatov et al., 2005; Tumkosit et 

al., 2006).  Future nAChR "4 Western blot analysis could be performed using 

antibodies developed by other groups, such as the monoclonal anti-"4 antibody MAb 

337 (Liu et al., 2009a) or the polyclonal anti-"4 antibody 4886 (Zhou et al., 2001). 
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Discussion 

In order to test the hypothesis that hnRNP K and Pur! negatively regulate CHRNB4 

gene expression, I first examined expression levels of the CHRNA5, CHRNA3 and 

CHRNB4 genes, as well as hnRNP K and Pur!, in several cell lines. This analysis 

revealed high expression of hnRNP K and Pur! in all cell lines tested including 

OBL21, PC12 -/+ NGF and Neuro 2A cells. Expression of CHRNA5, CHRNA3 and 

CHRNB4 genes was low in OBL21 cells and higher in PC12 -/+ NGF and Neuro 2A 

cells.  In OBL21 cells, where expression of the CHRNB4 gene is low, I observed an 

interaction of hnRNP K with the CHRNB4 promoter (Fig. A1.2). In undifferentiated 

and differentiated PC12 cells (Fig. A1.4) as well as Neuro 2A cells (Fig. A1.6), where 

expression of the CHRNB4 gene is higher, I see no interaction of hnRNP K with the 

CHRNB4 promoter. These data are in agreement with the hypothesis that hnRNP K 

negatively regulates expression of the CHRNB4 gene. siRNA mediated knockdown 

of hnRNP K had no impact on expression levels of the CHRNB4 mRNA or the other 

clustered nAChR subunits CHRNA5 and CHRNA3 in Neuro 2A cells (Fig. A1.8). As 

these genes are expressed at high levels in Neuro 2A cells (Fig. A1.6), this finding is 

also consistent with our previous hypothesis. From these data it appears that, at 

least in Neuro 2A cells, hnRNP K does not regulate expression of the CHRNA5, 

CHRNA3 and CHRNB4 genes. 

 

Due to its ability to directly interact with hnRNP K and its ability to interact with the 

opposing strand of the CT box in vitro, we previously hypothesized that Pur! acts in 

concert with hnRNP K to negatively regulate expression of the CHRNB4 gene (Fig. 
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A1.1) (Du et al., 1997; Du et al., 1998). Surprisingly, I obtained negative results in 

Pur! ChIP assays in each of the cell lines investigated. However, further 

experimentation is required to determine if the negative Pur! ChIP data (Figures 

A1.3, A1.5 and A1.7) are the result of a lack of interaction between Pur! and the 

CHRNB4 promoter in the chromatin environment (where DNA is associated with 

histone proteins and may be organized into higher order chromatin structures) or the 

result of the use of an anti-Pur! antibody that is not suitable for the ChIP assay. This 

issue could be addressed by using additional anti-Pur! antibodies, and also by 

performing additional ChIP positive control PCRs. 

 

Interestingly, Pur! knockdown experiments in Neuro 2A cells revealed that a 68% ± 

12% reduction of Pur! message resulted in decreased CHRNA5, CHRNA3 and 

CHRNB4 mRNA levels (Fig. A1.12). Furthermore, the reduction in clustered nAChR 

subunit gene expression was not a result of a general dampening of transcription, as 

GADPH mRNA levels were unchanged during Pur! knockdown. In an attempt to 

extend the analysis of Pur!’s regulation of the clustered subunit genes in Neuro 2A 

cells, Western blot analysis was performed on negative and Pur! siRNA treated 

cells. These data suggest that the reduction of nAChR CHRNA3 and CHRNA5 

message observed during Pur! knockdown results in reduced levels of the !3 and 

!5 proteins. Conversely, I detected an increase in "4 protein levels despite the 

reduction in message observed following Pur! siRNA treatment (Fig. A1.12). Further 

experimentation is required in order to determine to what extent, if any, Pur! 
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knockdown impacts !5, !3 and "4 nAChR subunit protein levels. As discussed 

above, these experiments should be performed using antibodies whose specificity 

has been verified using the corresponding nAChR KO animals.  

 

Contrary to our previous hypothesis these data indicate that, at least in Neuro 2A 

cells, Pur! acts to promote transcription of the CHRNB4 gene. Positive regulation of 

CHRNB4 gene expression by Pur! may be achieved through an interaction with 

Sp1. A similar interaction between Pur! and Sp1 has been shown to occur at the 

myelin basic protein (MBP) gene promoter (Tretiakova et al., 1999). In this system, 

both Sp1 and Pur! interact with the MBP promoter at overlapping regions of DNA, 

similar to what is observed at the CHRNB4 promoter CT / CA region (Bigger et al., 

1997; Du et al., 1997). At the MBP promoter, binding of Sp1 results in increased 

recruitment of Pur!. Furthermore, overexpression of both factors results in 

synergistic activation of the MBP gene promoter (Tretiakova et al., 1999). If we 

consider that Pur! is not a repressor and acts to positively influence expression of 

the CHRNB4 gene, the reduction of CHRNB4 gene expression following Pur! 

knockdown could be explained by the dampening of the cooperative effects of Pur! 

and Sp1 at the CHRNB4 gene promoter. Due to the fact that Sp1 also positively 

regulates expression of the CHRNA5 and CHRNA3 subunit genes (Campos-Caro et 

al., 1999; Benfante et al., 2007), inhibition of Pur! - Sp1 interactions could also 

explain the reduction in CHRNA5 and CHRNA3 mRNA observed in the Neuro 2A 

Pur! siRNA experiments (Fig. A1.10).  
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We have also shown previously that Pur! directly interacts with the transcription 

factor Sox10 (Melnikova et al., 2000a). This finding is of particular significance in 

light of the fact that Sox10 positively regulates expression of each of the three 

clustered nAChR subunit genes (Melnikova et al., 2000b; Improgo et al., 2010b) and 

interacts with the CHRNB4 promoter both in vitro (Liu et al., 1999) and in the context 

of native chromatin (Scofield et al., 2008). Despite the direct physical interaction, to 

date no functional interaction between Sox10 and Pur! has been reported.   

 

These findings advance the current understanding of the transcriptional regulation of 

the CHRNB4 gene by detailing the interaction of hnRNP K and Pur! with the 

CHRNB4 promoter in several neuronal-like cell lines with varying levels of 

CHRNA3/A5/B4 gene expression. These studies demonstrate that in Neuro 2A cells, 

Pur! acts to enhance transcription of the CHRNA5, CHRNA3 and CHRNB4 genes, 

providing an alternate hypothesis for the role that Pur! plays at the CHRNB4 

promoter, and providing the first evidence for positive regulation of nAChR subunit 

genes by Pur!. Given its interaction with factors that positively influence CHRNB4 

promoter activity and its positive regulation of CHRNB4 gene expression in Neuro 

2A cells, I hypothesize that Pur! participates in a multi-subunit transcriptional 

regulatory complex that acts to positively influence transcription of the CHRNB4 

gene (Fig. A1.13). This hypothesis could be tested further with experimentation 

aimed at discovering protein-protein interactions between Pur! and additional 

transcription factors that act to regulate expression of the CHRNB4 gene.   
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Figure A1.13: Revised model of positive-acting factors at the CHRNB4 gene 
promoter. The coding region of the CHRNB4 gene is represented as a light green 
box with arrow above the coding region indicating that CHRNB4 expression is turned 
on. The double stranded nucleotide sequences of two transcriptional regulatory 
elements, the CT and CA boxes, are also shown. Transcription factors Sox10 and 
Pur! are depicted as yellow and pink colored ovals with Sp1, Sp3, and c-Jun 
depicted as colored squares above the CA box. Factors shown previously to 
physically interact are depicted touching each other.  
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Limitations and Future Perspectives 

These studies provide insight into the functional role that the two transcription 

factors, hnRNP K and Pur!, play at the CHRNB4 promoter. As hnRNP K was found 

to interact with the CHRNB4 promoter in OBL21 cells siRNA experiments should be 

extended to OBL21 cells as well as other cell lines with low levels of CHRNB4 gene 

expression. These experiments may yield evidence that will contribute to a better 

understanding of the role that hnRNP K plays at the CHRNB4 promoter. siRNA 

experiments were not performed in OBL21 and PC12 cells due to technical 

difficulties in the optimization of the transfection procedure. However, the Neuro 2A 

cell line was easily transfected and cells remained healthy during the siRNA 

treatment. In Neuro 2A cells, knockdown of Pur! was found to negatively impact 

transcription of the CHRNA5, CHRNA3 and CHRNB4 genes, while in the ChIP 

experiments no interaction of Pur! with the CHRNB4 promoter was observed.  In 

addition to the positive control PCRs discussed above, as well as the use of different 

anti-Pur! antibodies, future Pur! ChIP experiments could be performed in a set of 

cell lines or tissue types with varying levels of CHRNB4 gene expression.  

 

As discussed above, Pur! ChIP derived DNA should also be used as template in 

PCR with primers designed to amplify a promoter fragment of a gene that has been 

shown previously to be regulated by Pur!. One possible candidate for a Pur! ChIP 

positive control is the neuron-specific FE65 gene. Much like the CHRNB4 gene, 

FE65 is transcribed from a TATA-less promoter, is positively regulated by Sp1 and is 

expressed primarily in neurons (Zambrano et al., 1997; Yu et al., 2010). ChIP-
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derived DNA could be used as template in PCR with primers designed to amplify the 

region of Pur! interaction with the FE65 gene promoter. In these experiments, I 

would expect enrichment of the FE65 promoter fragment in Pur! ChIPs to be 

several fold higher than IgG and Mock IP negative controls. 

 

In addition to ChIP assays, the Pur! siRNA knockdown experiments should also be 

extended to cells that have low levels of CHRNB4 gene expression. This course of 

experimentation is particularly important when considering that Pur! has been 

shown to function as either a repressor or activator of transcription based on its 

interaction with other co-factors (Gallia et al., 2000). Thus, the expression of cell-

type specific cofactors may influence whether Pur! plays a positive or negative 

transcriptional regulatory role at the CHRNB4 promoter. An examination of Pur! 

knockdown under conditions where CHRNB4 is expressed at low levels may provide 

insight into the possible regulatory role that Pur! plays in cells that express low 

levels of the CHRNB4 gene. 

 

In order to test the hypothesis that fewer functional "4-containing receptors are 

expressed in Neuro 2A cells following Pur! siRNA treatment, additional functional 

assays should be performed. For example, I would expect that when performing 

whole-cell patch clamp recordings from Pur! siRNA treated cells you would observe 

a less potent reduction of nicotine-induced currents by the !3"4 subtype selective 

nicotinic antagonist AuIB (Azam and McIntosh, 2009) when compared to negative 

siRNA treated cells. These data would indicate that fewer functional !3"4 receptors 
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are expressed in Pur! siRNA treated cells as a result of reduced nAChR mRNA 

production.  

 

These studies have investigated the roles that hnRNP K and Pur! play with respect 

to the transcriptional regulation of the CHRNA5, CHRNA3 and CHRNB4 genes. 

Using the ChIP assay, I was able to focus my investigation on the interaction of 

these proteins with the CHRNB4 promoter in the chromatin environment. These 

results demonstrated that hnRNP K interacts with the CHRNB4 promoter in OBL21 

cells but not in PC12 cells +/- NGF or in Neuro 2A cells. Despite negative results in 

Pur! ChIP assays, additional experimentation is required to determine if Pur! does 

not interact with the CHRNB4 promoter in the cell lines tested. In addition, siRNA 

experiments demonstrated that, in Neuro 2A cells, Pur! positively regulates 

expression of the CHRNA5, CHRNA3 and CHRNB4 genes, while hnRNP K neither 

positively nor negatively regulates expression of these genes. These results have 

provided the first evidence suggesting that Pur! positively regulates expression of 

the CHRNA5, CHRNA3 and CHRNB4 genes and have lead to the modification of 

our current model of transcriptional control of the CHRNB4 gene (Fig. A1.13).  
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