1,538 research outputs found

    Semiclassical Strings in AdS_5 x S^5 and Automorphic Functions

    Full text link
    Using AdS/CFT we derive from the folded spinning string ordinary differential equations for the anomalous dimension of the dual N=4 SYM twist-two operators at strong coupling. We show that for large spin the asymptotic solutions have the Gribov-Lipatov recirocity property. To obtain this result we use a hidden modular invariance of the energy-spin relation of the folded spinning string. Further we identify the Moch-Vermaseren-Vogt (MVV) relations, which were first recognized in plain QCD calculations, as the recurrence relations of the asymptotic series ansatz.Comment: 4 page

    On the validity of the solution of string field theory

    Get PDF
    We analyze the realm of validity of the recently found tachyon solution of cubic string field theory. We find that the equation of motion holds in a non trivial way when this solution is contracted with itself. This calculation is needed to conclude the proof of Sen's first conjecture. We also find that the equation of motion holds when the tachyon or gauge solutions are contracted among themselves.Comment: JHEP style, 9+1 pages. Typos correcte

    Normalization anomalies in level truncation calculations

    Full text link
    We test oscillator level truncation regularization in string field theory by calculating descent relations among vertices, or equivalently, the overlap of wedge states. We repeat the calculation using bosonic, as well as fermionic ghosts, where in the bosonic case we do the calculation both in the discrete and in the continuous basis. We also calculate analogous expressions in field level truncation. Each calculation gives a different result. We point out to the source of these differences and in the bosonic ghost case we pinpoint the origin of the difference between the discrete and continuous basis calculations. The conclusion is that level truncation regularization cannot be trusted in calculations involving normalization of singular states, such as wedge states, rank-one squeezed state projectors and string vertices.Comment: 1+20 pages, 6 figures. v2: Ref. added, typos correcte

    Superstring field theory equivalence: Ramond sector

    Full text link
    We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.Comment: v1: 24 pages. v2: 27 pages, significant modifications of the presentation, new section, typos corrected, references adde

    Conical defects in growing sheets

    Full text link
    A growing or shrinking disc will adopt a conical shape, its intrinsic geometry characterized by a surplus angle sese at the apex. If growth is slow, the cone will find its equilibrium. Whereas this is trivial if se<=0se <= 0, the disc can fold into one of a discrete infinite number of states if sese is positive. We construct these states in the regime where bending dominates, determine their energies and how stress is distributed in them. For each state a critical value of sese is identified beyond which the cone touches itself. Before this occurs, all states are stable; the ground state has two-fold symmetry.Comment: 4 pages, 4 figures, LaTeX, RevTeX style. New version corresponds to the one published in PR

    On surface states and star-subalgebras in string field theory

    Full text link
    We elaborate on the relations between surface states and squeezed states. First, we investigate two different criteria for determining whether a matter sector squeezed state is also a surface state and show that the two criteria are equivalent. Then, we derive similar criteria for the ghost sector. Next, we refine the criterion for determining whether a surface state is in H_{\kappa^2}, the subalgebra of squeezed states obeying [S,K_1^2]=0. This enables us to find all the surface states of the H_{\kappa^2} subalgebra, and show that it consists only of wedge states and (hybrid) butterflies. Finally, we investigate generalizations of this criterion and find an infinite family of surface states subalgebras, whose surfaces are described using a "generalized Schwarz-Christoffel" mapping.Comment: 38 pages, 6 figures, JHEP style; typos corrected, ref. adde

    Virasoro operators in the continuous basis of string field theory

    Get PDF
    In this work we derive two important tools for working in the \kappa basis of string field theory. First we give an analytical expression for the finite part of the spectral density \rho_{fin}. This expression is relevant when both matter and ghost sectors are considered. Then we calculate the form of the matter part of the Virasoro generators L_n in the \kappa basis, which construct string field theory's derivation Q_{BRST}. We find that the Virasoro generators are given by one dimensional delta functions with complex arguments.Comment: 16 page

    Assessing the Vegetation Condition Impacts of the 2011 Drought across the U.S. Southern Great Plains Using the Vegetation Drought Response Index (VegDRI)

    Get PDF
    The vegetation drought response index (VegDRI), which combines traditional climate- and satellite-based approaches for assessing vegetation conditions, offers new insights into assessing the impacts of drought from local to regional scales. In 2011, the U.S. southern Great Plains, which includes Texas, Oklahoma, and New Mexico, was plagued by moderate to extreme drought that was intensified by an extended period of recordbreaking heat. The 2011 drought presented an ideal case study to evaluate the performance of VegDRI in characterizing developing drought conditions. Assessment of the spatiotemporal drought patterns represented in the VegDRI maps showed that the severity and patterns of the drought across the region corresponded well to the record warm temperatures and much-below-normal precipitation reported by the National Climatic Data Center and the sectoral drought impacts documented by the Drought Impact Reporter (DIR). VegDRI values and maps also showed the evolution of the drought signal before the Las Conchas Fire (the largest fire in New Mexico’s history). Reports in the DIR indicated that the 2011 drought had major adverse impacts on most rangeland and pastures in Texas and Oklahoma, resulting in total direct losses of more than $12 billion associated with crop, livestock, and timber production. These severe impacts on vegetation were depicted by the VegDRI at subcounty, state, and regional levels. This study indicates that the VegDRI maps can be used with traditional drought indicators and other in situ measures to help producers and government officials with various management decisions, such as justifying disaster assistance, assessing fire risk, and identifying locations to move livestock for grazing
    • …
    corecore