75 research outputs found
Diagnostic performance of different thyroid imaging reporting and data systems (Kwak-TIRADS, EU-TIRADS and ACR TI-RADS) for risk stratification of small thyroid nodules (â€10 mm)
Due to the widespread use of ultrasound, small thyroid nodules (TNs) †10 mm are
common findings. Standardized approaches for the risk stratification of TNs with Thyroid Imaging
Reporting and Data Systems (TIRADS) were evaluated for the clinical routine. With TIRADS, the risk
of malignancy in TNs is calculated by scoring the number or combination of suspicious ultrasound
features, leading to recommendations for further diagnostic steps. However, there are only scarce
data on the performance of TIRADS for small TNs. The aim was to compare three different TIRADS
for risk stratification of small TNs in routine clinical practice. We conducted a retrospective cohort
analysis of TNs †10 mm and their available histology. Nodules were classified according to three
different TIRADS. In the study, 140 patients (n = 113 female) with 145 thyroid nodules (n = 76
malignant) were included. Most of the malignant nodules were papillary carcinoma (97%), and the
remaining 3% were medullary carcinoma. For all tested TIRADS, the prevalence of malignancy rose
with increasing category levels. The highest negative predictive value was found for ACR TI-RADS
and the highest positive predictive value for Kwak-TIRADS. All tested variants of TIRADS showed
comparable diagnostic performance for the risk stratification of small TNs. TIRADS seems to be a
promising tool to reliably assess the risk of malignancy of small TNs
Diagnostic Performance of Kwak, EU, ACR, and Korean TIRADS as Well as ATA Guidelines for the Ultrasound Risk Stratification of Non-Autonomously Functioning Thyroid Nodules in a Region with Long History of Iodine Deficiency: A German Multicenter Trial
Simple Summary In Germany, thyroid nodules can be detected by ultrasound examinations in over 30% of the adult population, mainly as a result of prolonged nutritive iodine deficiency. Although only a small proportion of the nodules are malignant, it is important to have a reliable examination method that not only can detect these few thyroid carcinomas with a high degree of certainty, but also not be unnecessarily invasive for the much larger number of benign nodules. Ultrasound is the method of choice, and ultrasound-based risk stratification systems are important tools in clinical care. However, many different systems have been introduced within the last decade. The aim of this study was to evaluate five common ultrasound risk stratification systems for their diagnostic accuracy of thyroid nodules from an area with long history of iodine deficiency. Abstract Germany has a long history of insufficient iodine supply and thyroid nodules occur in over 30% of the adult population, the vast majority of which are benign. Non-invasive diagnostics remain challenging, and ultrasound-based risk stratification systems are essential for selecting lesions requiring further clarification. However, no recommendation can yet be made about which system performs the best for iodine deficiency areas. In a German multicenter approach, 1211 thyroid nodules from 849 consecutive patients with cytological or histopathological results were enrolled. Scintigraphically hyperfunctioning lesions were excluded. Ultrasound features were prospectively recorded, and the resulting classifications according to five risk stratification systems were retrospectively determined. Observations determined 1022 benign and 189 malignant lesions. The diagnostic accuracies were 0.79, 0.78, 0.70, 0.82, and 0.79 for Kwak Thyroid Imaging Reporting and Data System (Kwak-TIRADS), American College of Radiology (ACR) TI-RADS, European Thyroid Association (EU)-TIRADS, Korean-TIRADS, and American Thyroid Association (ATA) Guidelines, respectively. Receiver Operating Curves revealed Areas under the Curve of 0.803, 0.795, 0.800, 0.805, and 0.801, respectively. According to the ATA Guidelines, 135 thyroid nodules (11.1%) could not be classified. Kwak-TIRADS, ACR TI-RADS, and Korean-TIRADS outperformed EU-TIRADS and ATA Guidelines and therefore can be primarily recommended for non-autonomously functioning lesions in areas with a history of iodine deficiency
Adrenocortical tumors and pheochromocytoma/paraganglioma initially mistaken as neuroblastoma â experiences from the GPOH-MET registry
In children and adolescents, neuroblastoma (NBL), pheochromocytoma (PCC), and adrenocortical tumors (ACT) can arise from the adrenal gland. It may be difficult to distinguish between these three entities including associated extra-adrenal tumors (paraganglioma, PGL). Precise discrimination, however, is of crucial importance for management. Biopsy in ACT or PCC is potentially harmful and should be avoided whenever possible. We herein report data on 10 children and adolescents with ACT and five with PCC/PGL, previously mistaken as NBL. Two patients with adrenocortical carcinoma died due to disease progression. Two (2/9, missing data in one patient) patients with a final diagnosis of ACT clearly presented with obvious clinical signs and symptoms of steroid hormone excess, while seven patients did not. Blood analyses indicated increased levels of steroid hormones in one additional patient; however, urinary steroid metabolome analysis was not performed in any patient. Two (2/10) patients underwent tumor biopsy, and in two others tumor rupture occurred intraoperatively. In 6/10 patients, ACT diagnosis was only established by a reference pediatric pathology laboratory. Four (4/5) patients with a final diagnosis of PCC/PGL presented with clinical signs and symptoms of catecholamine excess. Urine tests indicated possible catecholamine excess in two patients, while no testing was carried out in three patients. Measurements of plasma metanephrines were not performed in any patient. None of the five patients with PCC/PGL received adrenergic blockers before surgery. In four patients, PCC/PGL diagnosis was established by a local pathologist, and in one patient diagnosis was revised to PGL by a pediatric reference pathologist. Genetic testing, performed in three out of five patients with PCC/PGL, indicated pathogenic variants of PCC/PGL susceptibility genes. The differential diagnosis of adrenal neoplasias and associated extra-adrenal tumors in children and adolescents may be challenging, necessitating interdisciplinary and multidisciplinary efforts. In ambiguous and/or hormonally inactive cases through comprehensive biochemical testing, microscopical complete tumor resection by an experienced surgeon is vital to preventing poor outcome in children and adolescents with ACT and/or PCC/PGL. Finally, specimens need to be assessed by an experienced pediatric pathologist to establish diagnosis
Current perspectives on the management of patients with advanced RET-driven thyroid cancer in Europe
The incidence of thyroid cancer is increasing worldwide with the disease burden in Europe second only to that in Asia. In the last several decades, molecular pathways central to the pathogenesis of thyroid cancer have revealed a spectrum of targetable kinases/kinase receptors and oncogenic drivers characteristic of each histologic subtype, such as differentiated thyroid cancer, including papillary, follicular, and medullary thyroid cancer. Oncogenic alterations identified include B-Raf proto-oncogene (BRAF) fusions and mutations, neurotrophic tyrosine receptor kinase (NTRK) gene fusions, and rearranged during transfection (RET) receptor tyrosine kinase fusion and mutations. Multikinase inhibitors (MKIs) targeting RET in addition to multiple other kinases, such as sorafenib, lenvatinib and cabozantinib, have shown favourable activity in advanced radioiodine-refractory differentiated thyroid cancer or RET-altered medullary thyroid cancer; however, the clinical utility of MKI RET inhibition is limited by off-target toxicity resulting in high rates of dose reduction and drug discontinuation. Newer and selective RET inhibitors, selpercatinib and pralsetinib, have demonstrated potent efficacy and favourable toxicity profiles in clinical trials in the treatment of RET-driven advanced thyroid cancer and are now a therapeutic option in some clinical settings. Importantly, the optimal benefits of available specific targeted treatments for advanced RET-driven thyroid cancer require genetic testing. Prior to the initiation of systemic therapy, and in treatment-naĂŻve patients, RET inhibitors may be offered as first-line therapy if a RET alteration is found, supported by a multidisciplinary team approach
The association of intra-therapeutic heterogeneity of somatostatin receptor expression with morphological treatment response in patients undergoing PRRT with [177Lu]-DOTATATE
AIM:
Purpose of this study was to evaluate the association of the spatial heterogeneity (asphericity, ASP) in intra-therapeutic SPECT/ CT imaging of somatostatin receptor (SSR) positive metastatic gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) for morphological treatment response to peptide receptor radionuclide therapy (PRRT). Secondly, we correlated ASP derived form a pre-therapeutic OctreoScan (ASP[In]) and an intra-therapeutic [177Lu]-SPECT/CT (ASP[Lu]).
MATERIALS AND METHODS:
Data from first therapy cycle [177Lu-DOTA0-Tyr3]octreotate ([177Lu]-DOTATATE)-PRRT was retrospectively analyzed in 33 patients (m = 20; w = 13; median age, 72 [46-88] years). The evaluation of response to PRRT was performed according to RECIST 1.1 in responding lesions [RL (SD, PR, CR), n = 104] and non-responding lesions [NRL (PD), n = 27]. The association of SSR tumor heterogeneity with morphological response was evaluated by Kruskal-Wallis test and receiver operating characteristic curve (ROC). The optimal threshold for separation (RL vs. NRL) was calculated using the Youden-index. Relationship between pre- and intra-therapeutic ASP was determined with Spearman's rank correlation coefficient (Ï) and Bland-Altman plots.
RESULTS:
A total of 131 lesions (liver: n = 59, lymph nodes: n = 48, bone: n = 19, pancreas: n = 5) were analyzed. Lesions with higher ASP values showed a significantly poorer response to PRRT (PD, median: 11.3, IQR: 8.5-15.5; SD, median: 3.4, IQR: 2.1-4.5; PR, median 1.7, IQR: 0.9-2.8; CR, median: 0.5, IQR: 0.0-1.3); Kruskal-Wallis, p5.45% (sensitivity 96% and specificity 82%). The correlation coefficient of pre- and intra-therapeutic ASP revealed Ï = 0.72 (p <0.01). The mean absolute difference between ASP[In] and ASP[Lu] was -0.04 (95% Limits of Agreement, -6.1-6.0).
CONCLUSION:
Pre- and intra-therapeutic ASP shows a strong correlation and might be an useful tool for therapy monitoring
Introducing a pole concept for nodule growth in the thyroid gland: taller-than-wide shape, frequency, location and risk of malignancy of thyroid nodules in an area with iodine deficiency
Purpose : (i) To examine the criterion taller-than-wide (TTW) for the sonographic assessment of thyroid nodules in areas of iodine deficiency in terms of frequency, anatomical distribution within the thyroid gland and risk of malignancy. (ii) To develop a model for nodule growth in the thyroid gland. Methods: German multicenter study consisting of two parts. In the prospective part, thyroid nodules were sonographically measured in all three dimensions, location within the thyroid gland and contact to a protrusion-like formation (horn) in the dorsal position of thyroid gland was noted. In addition, further sonographic features such as the composition, echogenity, margins and calcifications were investigated. All nodules from the prospective part were assessed for malignancy as part of clinical routine at the decision of the treating physician adhering to institutionally based algorithms. In the retrospective part, only nodules with fine needle aspiration and/or histology were included. The risk of malignancy in TTW nodules was determined by correlating them with cyotological and histological results. Results: Prospective part: out of 441 consecutively evaluated thyroid nodules, 6 were found to be malignant (1.4%, 95% CI 0.6â2.7%). Among the 74 TTW nodules (17%), 1 was malignant (1%, 95% CI 0â4%). TTW nodules were more often located in the dorsal half of the thyroid than non-TTW nodules (factor 2.3, p = 0.01, 95% CI 2.1â2.5) and more often located in close proximity to a horn than non-TTW nodules (factor 3.0, p = 0.01, 95% CI 2.4â3.8). Retrospective part: out of 1315 histologically and/or cytologically confirmed thyroid nodules, 163 TTW nodules were retrieved and retrospectively analyzed. A TTW nodule was 1.7 times more often benign when it was dorsal (95% CI 1.1â2.5) and 2.5 times more often benign when it was associated with a horn (95% CI 1.2â5.3). The overall probability of malignancy for TTW nodules was 38% (95% CI 30â46%) in this highly preselected patient group. Conclusion: TTW nodules are common in iodine deficient areas. They are often located in the dorsal half of the thyroid gland and are frequently associated with a dorsal protrusion-like formation (horn) of the thyroid. Obviously, the shape of benign nodules follows distinct anatomical preconditions within the thyroid gland. The frequency of TTW nodules and their predominant benignity can be explained by a pole concept of goiter growth. The difference between the low malignancy risk of TTW nodules found on a prospective basis and the high risk found retrospectively may be the result of a positive preselection in the latter
Molecular Theranostics in Radioiodine-Refractory Differentiated Thyroid Cancer
Differentiated thyroid cancer (DTC) is the most common subtype of thyroid cancer and has an excellent overall prognosis. However, metastatic DTC in certain cases may have a poor prognosis as it becomes radioiodine-refractory. Molecular imaging is essential for disease evaluation and further management. The most commonly used tracers are [18F]FDG and isotopes of radioiodine. Several other radiopharmaceuticals may be used as well, with different diagnostic performances. This review article aims to summarize radiopharmaceuticals used in patients with radioiodine-refractory DTC (RAI-R DTC), focusing on their different molecular pathways. Additionally, it will demonstrate possible applications of the theranostics approach to this subgroup of metastatic DTC
- âŠ