110 research outputs found
Genetic polymorphisms in lung disease: bandwagon or breakthrough?
The study of genetic polymorphisms has touched every aspect of pulmonary and critical care medicine. We review recent progress made using genetic polymorphisms to define pathophysiology, to identify persons at risk for pulmonary disease and to predict treatment response. Several pitfalls are commonly encountered in studying genetic polymorphisms, and this article points out criteria that should be applied to design high-quality genetic polymorphism studies
Recommended from our members
Antegrade common femoral artery closure device use is associated with decreased complications.
ObjectiveAntegrade femoral artery access is often used for ipsilateral infrainguinal peripheral vascular intervention. However, the use of closure devices (CD) for antegrade access (AA) is still considered outside the instructions for use for most devices. We hypothesized that CD use for antegrade femoral access would not be associated with an increased odds of access site complications.MethodsThe Vascular Quality Initiative was queried from 2010 to 2019 for infrainguinal peripheral vascular interventions performed via femoral AA. Patients who had a cutdown or multiple access sites were excluded. Cases were then stratified into whether a CD was used or not. Hierarchical multivariable logistic regressions controlling for hospital-level variation were used to examine the independent association between CD use and access site complications. A sensitivity analysis using coarsened exact matching was performed using factors different between treatment groups to reduce imbalance between the groups.ResultsOverall, 11,562 cases were identified and 5693 (49.2%) used a CD. Patients treated with a CD were less likely to be white (74.1% vs 75.2%), have coronary artery disease (29.7% vs 33.4%), use aspirin (68.7% vs 72.4%), and have heparin reversal with protamine (15.5% vs 25.6%; all P < .05). CD patients were more likely to be obese (31.6% vs 27.0%), have an elective operation (82.6% vs 80.1%), ultrasound-guided access (75.5% vs 60.6%), and a larger access sheath (6.0 ± 1.0 F vs 5.5 ± 1.0 F; P < .05 for all). CD cases were less likely to develop any access site hematoma (2.55% vs 3.53%; P < .01) or a hematoma requiring reintervention (0.63% vs 1.26%; P < .01) and had no difference in access site stenosis or occlusion (0.30% vs 0.22%; P = .47) compared with no CD. On multivariable analysis, CD cases had significantly decreased odds of developing any access site hematoma (odds ratio, 0.75; 95% confidence interval, 0.59-0.95) and a hematoma requiring intervention (odds ratio, 0.56; 95% confidence interval, 0.38-0.81). A sensitivity analysis after coarsened exact matching confirmed these findings.ConclusionsIn this nationally representative sample, CD use for AA was associated with a lower odds of hematoma in selected patients. Extending the instructions for use indications for CDs to include femoral AA may decrease the incidence of access site complications, patient exposure to reintervention, and costs to the health care system
Understanding X-ray absorption in liquid water using triple excitations in multilevel coupled cluster theory
X-ray absorption (XA) spectroscopy is an essential experimental tool to investigate the local structure of liquid water. Interpretation of the experiment poses a significant challenge and requires a quantitative theoretical description. High-quality theoretical XA spectra require reliable molecular dynamics simulations and accurate electronic structure calculations. Here, we present the first successful application of coupled cluster theory to model the XA spectrum of liquid water. We overcome the computational limitations on system size by employing a multilevel coupled cluster framework for large molecular systems. Excellent agreement with the experimental spectrum is achieved by including triple excitations in the wave function and using molecular structures from state-of-the-art path-integral molecular dynamics. We demonstrate that an accurate description of the electronic structure within the first solvation shell is sufficient to successfully model the XA spectrum of liquid water within the multilevel framework. Furthermore, we present a rigorous charge transfer analysis of the XA spectrum, which is reliable due to the accuracy and robustness of the electronic structure methodology. This analysis aligns with previous studies regarding the character of the prominent features of the XA spectrum of liquid water
Fine mapping of chromosome 15q25 implicates ZNF592 in neurosarcoidosis patients
Neurosarcoidosis is a clinical subtype of sarcoidosis characterized by the presence of granulomas in the nervous system. Here, we report a highly significant association with a variant (rs75652600, P = 3.12 Ă 10(-8), odds ratios = 4.34) within a zinc finger gene, ZNF592, from an imputation-based fine-mapping study of the chromosomal region 15q25 in African-Americans with neurosarcoidosis. We validate the association with ZNF592, a gene previously shown to cause cerebellar ataxia, in a cohort of European-Americans with neurosarcoidosis by uncovering low-frequency variants with a similar risk effect size (chr15:85309284, P = 0.0021, odds ratios = 5.36)
Physical mapping of the cystic fibrosis region by pulsed-field gel electrophoresis
The gene for cystic fibrosis (CF) is known to be flanked by the closely linked DNA markers met and J3.11 on chromosome 7. Using the technique of pulsed-field gel electrophoresis, we have constructed a complete overlapping restriction map of approximately 3000 kb of DNA in this regions. The met and J3.11 probes are found to be between 1300 and 1800 kb apart, which compares well with their genetic distance of 1-2 cM. The CF gene must be located within this interval, and the availability of this physical map should be of considerable utility in mapping additional clones as the search for the gene proceeds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27317/1/0000339.pd
Efficient Generalized Least Squares Method for Mixed Population and Familyâbased Samples in Genomeâwide Association Studies
Genomeâwide association studies (GWAS) that draw samples from multiple studies with a mixture of relationship structures are becoming more common. Analytical methods exist for using mixedâsample data, but few methods have been proposed for the analysis of genotypeâbyâenvironment (GĂE) interactions. Using GWAS data from a study of sarcoidosis susceptibility genes in related and unrelated African Americans, we explored the current analytic options for genotype association testing in studies using both unrelated and familyâbased designs. We propose a novel methodâgeneralized least squares (GLX)âto estimate both SNP and GĂE interaction effects for categorical environmental covariates and compared this method to generalized estimating equations (GEE), logistic regression, the CochranâArmitage trend test, and the W QLS and M QLS methods. We used simulation to demonstrate that the GLX method reduces type I error under a variety of pedigree structures. We also demonstrate its superior power to detect SNP effects while offering computational advantages and comparable power to detect GĂE interactions versus GEE. Using this method, we found two novel SNPs that demonstrate a significant genomeâwide interaction with insecticide exposureârs10499003 and rs7745248, located in the intronic and 3' UTR regions of the FUT9 gene on chromosome 6q16.1.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107571/1/gepi21811.pd
Pharmacy Data for Tuberculosis Surveillance and Assessment of Patient Management
Pharmacy data help locate tuberculosis cases and assess their management
Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica: An interdecadal (1993-2013) analysis
We analyzed 20âyears (1993â2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during DecemberâMarch, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during NovemberâDecember, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during DecemberâMarch are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during NovemberâDecember is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change
Sex differences in the genetics of sarcoidosis across European and African ancestry populations
Methods A meta-analysis of genome-wide association studies was conducted on Europeans and African Americans, totaling 10,103 individuals from three population-based cohorts, Sweden (n = 3,843), Germany (n = 3,342), and the United States (n = 2,918), followed by an SNP lookup in the UK Biobank (UKB, n = 387,945). A genome-wide association study based on Immunochip data consisting of 141,000 single nucleotide polymorphisms (SNPs) was conducted in the sex groups. The association test was based on logistic regression using the additive model in LS and non-LS sex groups independently. Additionally, gene-based analysis, gene expression, expression quantitative trait loci (eQTL) mapping, and pathway analysis were performed to discover functionally relevant mechanisms related to sarcoidosis and biological sex. Results We identified sex-dependent genetic variations in LS and non-LS sex groups. Genetic findings in LS sex groups were explicitly located in the extended Major Histocompatibility Complex (xMHC). In non-LS, genetic differences in the sex groups were primarily located in the MHC class II subregion and ANXA11. Gene-based analysis and eQTL enrichment revealed distinct sex-specific gene expression patterns in various tissues and immune cell types. In LS sex groups, a pathway map related to antigen presentation machinery by IFN-gamma. In non-LS, pathway maps related to immune response lectin-induced complement pathway in males and related to maturation and migration of dendritic cells in skin sensitization in females were identified. Conclusion Our findings provide new evidence for a sex bias underlying sarcoidosis genetic architecture, particularly in clinical phenotypes LS and non-LS. Biological sex likely plays a role in disease mechanisms in sarcoidosis
- âŠ