2,268 research outputs found

    LES of the turbulent compressible flow spatially developing in a plane channel

    Get PDF
    Large eddy simulation of the turbulent flow which spatially develops in a plane channel with a length of 88h will be presented for Re=4880 and M=0.7. The effect of realistic inflow conditions and low reflective outflow conditions will be analysed and discussed. Supersonic channel flow case and distorsion of the flow by mean of adverse pressure gradient will be further considered

    Hydrodynamics of steep streams with planar coarse-grained beds: Turbulence, flow resistance, and implications for sediment transport

    Get PDF
    The hydraulics of steep mountain streams differ from lower gradient rivers due to shallow and rough flows, energetic subsurface flow, and macro-scale form drag from immobile boulders and channel- and bed-forms. Heightened flow resistance and reduced sediment transport rates in steep streams are commonly attributed to macro-scale form drag; however, little work has explored steep river hydrodynamics in the absence of complex bed geometries. Here we present theory for the vertical structure of flow velocity in steep streams with planar, rough beds that couples surface and subsurface flow. We test it against flume experiments using a bed of fixed cobbles over a wide range of bed slopes (0.4 – 30%). Experimental flows have a nearly logarithmic velocity profile far above the bed; flow velocity decreases less than logarithmically towards the bed and is non-zero at the bed surface. Velocity profiles match theory derived using a hybrid eddy-viscosity model, in which the mixing length is a function of height above the bed and bed roughness. Subsurface flow velocities are large (> 1 m/s) and follow a modified Darcy-Brinkman-Forchheimer relation that accounts for channel slope and shear from overlying surface flow. Near-bed turbulent fluctuations decrease for shallow, rough flows and scale with the depth-averaged flow velocity rather than bed shear velocity. Flow resistance for rough, planar beds closely matches observations in natural steep streams despite the lack of bed- or channel-forms in the experiments, suggesting that macro-scale form drag is smaller than commonly assumed in stress partitioning models for sediment transport

    Comparison of Cost for Different Coverage Scenarios between Copper and Fiber Access Networks

    Get PDF

    A PROBABILISTIC APPROACH FOR COMPRESSOR SIZING AND PLANT DESIGN

    Get PDF
    LectureEquipment sizing decisions in the Oil and Gas Industry often have to be made based on incomplete data. Often, the exact process conditions are based on numerous assumptions about well performance, market conditions, environmental conditions and others. Since the ultimate goal is to meet production commitments, the traditional way of addressing this is, to use worst case conditions, and often adding margins onto these. This will invariably lead to plants that are oversized, in some instances by large margins. In reality, the operating conditions are very rarely the assumed worst case conditions, but they are usually more benign most of the time. Plants designed based on worst case conditions, once in operation, will therefore usually not operate under optimum conditions, have reduced flexibility, and therefore cause both higher capital expenses and operating expenses. The authors outline a new probabilistic methodology that provides a framework for more intelligent process-machine designs . A standardized framework using Monte Carlo simulation and risk analysis is presented that more accurately defines process uncertainty and its impact on machine performance . This paper describes a new method for the design of efficient plants. The use of statistical and probabilistic tools allows to better account for the unpredictability of component performance, as well as for ambient conditions and demand. Using the methodology allows to design plants that perform best under the most likely scenarios, as opposed to traditional designs that tend to work best under unlikely worst case scenarios. A study was performed for a relatively simple scenario, but the method is not limited, and can easily be adapted to scenarios involving entire pipeline systems, complete plants, or platform operations. Based on these considerations, significant cost reductions are possible in many cases

    Finite element modeling of dynamic frictional rupture with rate and state friction

    Full text link
    Numerous laboratory experiments have demonstrated the dependence of the friction coefficient on the interfacial slip rate and the contact history, a behavior generically called rate and state friction. Although numerical models have been widely used for analyzing rate and state friction, in general they consider infinite elastic domains surrounding the sliding interface and rely on boundary integral formulations. Much less work has been dedicated to modeling finite size systems to account for interactions with boundaries. This paper investigates rate and state frictional interfaces in the context of finite size systems with the finite element method in explicit dynamics. We investigate the long term behavior of the sliding interface for two different friction laws: a velocity weakening law, for which the friction monotonously decreases with increasing sliding velocity, and a velocity weakening-strengthening law, for which the friction coefficient first decreases but then increases above a critical velocity. We show that for both friction laws at finite times, that is before wave reflections from the boundaries come back to the sliding interface, a temporary steady state sliding is reached, with a well-defined stress drop at the interface. This stress drop gives rise to a stress concentration and leads to an analogy between friction and fracture. However, at longer times, that is after multiple wave reflections, the stress drop is essentially zero, resulting in losing the analogy with fracture mechanics. Finally, the simulations reveal that velocity weakening is unstable at long time scales, as it results in an acceleration of the sliding blocks. On the other hand, velocity weakening-strengthening reaches a steady state sliding configuration

    Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines

    Get PDF
    Polyamine biosynthesis and function has been shown to be a good drug target in some parasitic protozoa and it is proposed that the pathway might also represent a target in the malaria parasite Plasmodium falciparum. A series of 1,3,5-triazine-substituted polyamine analogues were tested for activity against Plasmodium falciparum in vitro. The series showed activity against the parasites and were generally more active against the chloroquine-resistant line K1 than the chloroquine-susceptible line NF54. Simple unbranched analogues had better activity than analogues carrying branched or cyclic central chains. Addition of multiple triazine units in general led to increased activity of the compound

    Socioeconomic agents as active matter in nonequilibrium Sakoda-Schelling models

    Full text link
    How robust are socioeconomic agent-based models with respect to the details of the agents' decision rule? We tackle this question by considering an occupation model in the spirit of the Sakoda-Schelling model, historically introduced to shed light on segregation dynamics among human groups. For a large class of utility functions and decision rules, we pinpoint the nonequilibrium nature of the agent dynamics, while recovering the equilibrium-like phase separation phenomenology. Within the mean field approximation we show how the model can be mapped, to some extent, onto an active matter field description (Active Model B). Finally, we consider non-reciprocal interactions between two populations, and show how they can lead to non-steady macroscopic behavior. We believe our approach provides a unifying framework to further study geography-dependent agent-based models, notably paving the way for joint consideration of population and price dynamics within a field theoretic approach.Comment: 12 pages, 7 figure
    • …
    corecore